When an explosive detonates or a propellant or flare burns, consumption of the energetic filler should be complete but rarely is, especially in the presence of large amounts of non-combustible materials. Herein we examine three types of perchlorate-containing devices to estimate their potential as sources of contamination in their normal mode of functioning. Road flares, rocket propellants and ammonium nitrate (AN) emulsion explosives are potentially significant anthropogenic sources of perchlorate contamination. This laboratory evaluated perchlorate residue from burning of flares and propellants as well as detonations of ammonium nitrate emulsion explosives. Residual perchlorate in commercial products ranged from 0.094 mg perchlorate per gram material (flares) to 0.012 mg perchlorate per gram material (AN emulsion explosives). The rocket propellant formulations, prepared in this laboratory, generated 0.014 mg of perchlorate residue per gram of material. 相似文献
A novel liquid-solid circulating fluidized bed bioreactor (LSCFB) configured with anoxic and aerobic columns and lava rock as the biofilm carrier was used to treat synthetic municipal wastewater. Four different empty bed contact times (EBCTs) of 0.82, 0.65, 0.55, and 0.44 h were examined to optimize nutrient removal capability of the system. The LSCFB demonstrated tertiary effluent quality organic and nitrogen removal efficiencies. Effluent characteristics of the LSCFB were soluble biological oxygen demand (SBOD)10 mg l(-1) and total nitrogen (TN)<10 mg l(-1) at organic loading rate (OLR) of 5.3 kg m(-3)d(-1) and nitrogen loading rate of 0.54 kg Nm(-3)d(-1). Remarkably low yields of 0.14, 0.17, 0.19, and 0.21 g VSS g(-1)COD were observed at OLR of 2.6, 3.2, 4.1 and 5.3 kg COD m(-3)d(-1), where increment of biomass growth and detachment rate were also experienced with increasing OLR. However the system demonstrated only 30% phosphorus removal, and mass balances along the anoxic and aerobic columns showed biological phosphorus removal in the system. Organic mass balance showed that approximately 40% of the influent COD was utilized in the anoxic column and the remaining COD was oxidized in the aerobic column. The system is very efficient in nitrification-denitrification, with more than 90% nitrification of ammonium and overall nitrogen removal in the LSCFB was 70+/-11% even at an EBCT of 0.44 h. 相似文献
Woody encroachment is a widespread and acute phenomenon affecting grasslands and savannas worldwide. We performed a meta-analysis of 29 studies from 13 different grassland/savanna communities in North America to determine the consequences of woody encroachment on plant species richness. In all 13 communities, species richness declined with woody plant encroachment (average decline = 45%). Species richness declined more in communities with higher precipitation (r2 = 0.81) and where encroachment was associated with a greater change in annual net primary productivity (ANPP; r2 = 0.69). Based on the strong positive correlation between precipitation and ANPP following encroachment (r2 = 0.87), we hypothesize that these relationships occur because water-limited woody plants experience a greater physiological and demographic release as precipitation increases. The observed relationship between species richness and ANPP provides support for the theoretical expectation that a trade-off occurs between richness and productivity in herbaceous communities. We conclude that woody plant encroachment leads to significant declines in species richness in North American grassland/savanna communities. 相似文献
Relaxed eddy accumulation (REA) measurements of the total gaseous mercury (TGM) flux measurements were taken over a deciduous forest predominantly composed of Red Maple (Acer rubrum L.) during the growing season of 2004 and the second half of the growing season of 2005. The magnitudes of the flux estimates were in the range of published results from other micrometeorological mercury fluxes taken above a tall canopy and larger than estimates from flux chambers. The magnitude and direction of the flux were not static during the growing season. There was a significant trend (p < 0.001), from net deposition of TGM in early summer to net evasion in the late summer and early fall before complete senescence. A growing season atmosphere-canopy total mercury (TGM) compensation point during unstable daytime conditions was estimated at background ambient concentrations (1.41 ng m?3). The trend in the seasonal net TGM flux indicates that long term dry deposition monitoring is needed to accurately estimate mercury loading over a forest ecosystem. 相似文献
Environmental Management - In the United States, forest governance practices have utilized a variety of public participation mechanisms to improve decision-making and instill public legitimacy.... 相似文献
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future.
Implications: Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. 相似文献