首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19985篇
  免费   268篇
  国内免费   201篇
安全科学   636篇
废物处理   792篇
环保管理   3300篇
综合类   3433篇
基础理论   4903篇
环境理论   14篇
污染及防治   4867篇
评价与监测   1254篇
社会与环境   1083篇
灾害及防治   172篇
  2022年   139篇
  2021年   169篇
  2020年   134篇
  2019年   187篇
  2018年   263篇
  2017年   314篇
  2016年   425篇
  2015年   365篇
  2014年   461篇
  2013年   1799篇
  2012年   621篇
  2011年   840篇
  2010年   664篇
  2009年   739篇
  2008年   854篇
  2007年   870篇
  2006年   811篇
  2005年   632篇
  2004年   645篇
  2003年   654篇
  2002年   579篇
  2001年   611篇
  2000年   516篇
  1999年   328篇
  1998年   261篇
  1997年   249篇
  1996年   274篇
  1995年   280篇
  1994年   263篇
  1993年   266篇
  1992年   283篇
  1991年   242篇
  1990年   250篇
  1989年   214篇
  1988年   182篇
  1987年   167篇
  1986年   196篇
  1985年   196篇
  1984年   202篇
  1983年   206篇
  1982年   191篇
  1981年   206篇
  1980年   193篇
  1979年   166篇
  1978年   128篇
  1977年   136篇
  1974年   115篇
  1973年   98篇
  1972年   113篇
  1971年   97篇
排序方式: 共有10000条查询结果,搜索用时 358 毫秒
501.
A multi-objective optimisation approach to water management   总被引:3,自引:0,他引:3  
The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area.  相似文献   
502.
A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.  相似文献   
503.
Crop soils, ditch sediments, and water flowing from several farm areas to salmon tributary streams of the Fraser River in the Lower Fraser Valley (LFV) of British Columbia, Canada, were sampled in 2002-2003 to quantify for residues of an organochlorine cyclodiene pesticide, endosulfan (END = alpha-endosulfan + beta-endosulfan + endosulfan sulfate). Residues from historical use of other selected organochlorine pesticides, namely, cyclodienes (aldrin, alpha-chlordane, gamma-chlordane, dieldrin, endrin, endrin aldehyde, heptachlor, and heptachlor epoxide), hexachlorocyclohexanes [alpha-benzene-hexachloride (alpha-BHC), beta-BHC, delta-BHC, and gamma-BHC (lindane)], and DDT-related compounds (p,p-DDT, p,p-DDD, p,p-DDE, and methoxychlor) were also determined. Reference and background levels of these pesticides in ditches leading to fish streams were obtained from pristine watershed areas. Varying amounts of END residues were detected in soils (<0.02-5.60 mg kg(-1) dry wt.) and ditch sediments (<0.02-3.33 mg kg(-1) dry wt.) in mainly three of five farm areas sampled. Likewise, residues (excluding END) of other selected organochlorine compounds such as aldrin, BHC, chlordane, endrin, p,p-DDT, methoxychlor, and their respective major transformation products (endosulfan sulfate, dieldrin, endrin aldehyde, heptachlor, heptachlor epoxide, p,p-DDD, and p,p-DDE) were found in crop soils (<0.02-16.2 mg kg(-1) dry wt.) and sediments (<0.02-9.73 mg kg(-1) dry wt.). Most of these pesticides (END: <0.01-1.86 microg L(-1); other selected organochlorine pesticides: <0.0.1-1.50 microg L(-1)) were also found in ditch water leading to salmon streams in several farms. The END levels of crop soils from the same LFV study farms in 1994 and 2003 indicated an estimated decline of 22% to 1.35 mg kg(-1) dry wt. during that period. This reduction was probably due to the increasing use of alternate pesticides (e.g., organophosphorus compounds). Some possible biological implications of these pesticide residues on nontarget organisms in the LFV are discussed.  相似文献   
504.
Nitrogen removal in laboratory model leachfields with organic-rich layers   总被引:1,自引:0,他引:1  
Septic system leachfields can release dissolved nitrogen in the form of nitrate into ground water, presenting a significant source of pollution. Low cost, passive modifications, which increase N removal in traditional leachfields, could substantially reduce the overall impact on ground water resources. Bench-scale laboratory models were constructed to evaluate the effect of placing an organic layer below the leachfield on total N removal. The organic layer provides a carbon source for denitrification. Column units representing septic leachfields were constructed with sawdust-native soil organic layers placed 0.45 m below the influent line and with thicknesses of 0.0, 0.3, 0.6, and 0.9 m. Using a synthetic septic tank effluent, NO(3)-N concentrations at 3.8 m below the influent line were consistently below 1 mg L(-1) during 10 months of operation compared with a NO(3)-N concentration of nearly 12 mg L(-1) in the control column. The average total N removal increased from 31% without the organic layer to 67% with the organic layer. Total N removal appeared limited by the extent of organic N oxidation and nitrification in the 0.45-m aerobic zone. Design modifications targeted at improving nitrification above the organic layer may further increase total N removal. Increased organic layer thicknesses from 0.3 m to 0.9 m did not significantly improve average total N removal, but caused a shift in residual nitrogen from organic N to ammonia N. Results indicate that addition of a layer of carbon source material at least 0.3 m thick below a standard leachfield substantially improves total N removal.  相似文献   
505.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   
506.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
507.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   
508.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   
509.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   
510.
Emitted thermal infrared radiation (TIR, λ= 8 to 14 μm) can be used to measure surface water temperatures (top approximately 100 μm). This study evaluates the accuracy of stream (50 to 500 m wide) and lake (300 to 5,000 m wide) radiant temperatures (15 to 22°C) derived from airborne (MASTER, 5 to 15 m) and satellite (ASTER 90 m, Landsat ETM+ 60 m) TIR images. Applied atmospheric compensations changed water temperatures by ?0.2 to +2.0°C. Atmospheric compensation depended primarily on atmospheric water vapor and temperature, sensor viewing geometry, and water temperature. Agreement between multiple TIR bands (MASTER ‐ 10 bands, ASTER ‐ 5 bands) provided an independent check on recovered temperatures. Compensations improved agreement between image and in situ surface temperatures (from 2.0 to 1.1°C average deviation); however, compensations did not improve agreement between river image temperatures and loggers installed at the stream bed (from 0.6 to 1.6°C average deviation). Analysis of field temperatures suggests that vertical thermal stratification may have caused a systematic difference between instream gage temperatures and corrected image temperatures. As a result, agreement between image temperatures and instream temperatures did not imply that accurate TIR temperatures were recovered. Based on these analyses, practical accuracies for corrected TIR lake and stream surface temperatures are around 1°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号