首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29055篇
  免费   312篇
  国内免费   341篇
安全科学   670篇
废物处理   1627篇
环保管理   4103篇
综合类   4031篇
基础理论   8073篇
环境理论   11篇
污染及防治   6523篇
评价与监测   2124篇
社会与环境   2409篇
灾害及防治   137篇
  2023年   96篇
  2022年   175篇
  2021年   185篇
  2020年   207篇
  2019年   171篇
  2018年   1822篇
  2017年   1714篇
  2016年   1630篇
  2015年   484篇
  2014年   509篇
  2013年   1591篇
  2012年   1143篇
  2011年   2337篇
  2010年   1484篇
  2009年   1460篇
  2008年   1850篇
  2007年   2242篇
  2006年   780篇
  2005年   725篇
  2004年   704篇
  2003年   733篇
  2002年   743篇
  2001年   680篇
  2000年   554篇
  1999年   334篇
  1998年   247篇
  1997年   246篇
  1996年   229篇
  1995年   278篇
  1994年   221篇
  1993年   221篇
  1992年   186篇
  1991年   194篇
  1990年   184篇
  1989年   187篇
  1988年   155篇
  1987年   140篇
  1986年   168篇
  1985年   151篇
  1984年   212篇
  1983年   161篇
  1982年   181篇
  1981年   166篇
  1980年   136篇
  1979年   156篇
  1978年   100篇
  1977年   100篇
  1974年   97篇
  1973年   88篇
  1972年   97篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.  相似文献   
982.
A multi-disciplinary approach was used to evaluate the health of yellow perch (Perca flavescens) in the St. Lawrence River (Quebec, Canada), which is experiencing a severe population decline in the downstream portion of the river. Physiological parameters, liver alterations, trace metal concentrations, parasite prevalence and abundance, stable isotope composition, and the presence/absence of the viral hemorragic septicemia virus (VHSV) were evaluated in perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island, and Lake St. Pierre (north and south). Trace metal concentrations in surface water were higher in Lake St. Louis and downstream of a major urban wastewater treatment plant discharge, indicating that this effluent was a significant source of Cu, As, Ag, Zn, and Cd. Levels of Pb in surface water exceeded thresholds for the protection of aquatic life in Lake St. Louis and were negatively correlated with body condition index in this lake. In Lake St. Pierre, Cu, Ag, and Cd bioaccumulated significantly in perch liver and lower body condition index and greater liver damage were observed compared to upstream sites. Parasite analyses indicated a higher abundance of metacercariae of the trematodes Apophallus brevis and Diplostomum spp. in Lake St. Louis, and VHSV was not detected in the liver of yellow perch for all studied sites. Overall, results suggested that the global health of yellow perch from Lake St. Pierre is lower compared to upstream studied sites, which could contribute to the documented population collapse at this site.  相似文献   
983.
984.
985.
Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4?±?0.1 mg l?1 of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a?=?2.04 μg l?1; turbidity?=?2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a?=?50.3 μg l?1; turbidity?=?16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.  相似文献   
986.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   
987.
988.
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.  相似文献   
989.
Water treatment residuals (WTRs) produced in large quantities during deironing and demanganization of infiltration water, due to high content of iron and manganese oxides, exhibit excellent sorptive properties toward arsenate and arsenite. Nonetheless, since they consist of microparticles, their practical use as an adsorbent is limited by difficulties with separation from treated solutions. The aim of this study was entrapment of chemically pretreated WTR into calcium alginate polymer and examination of sorptive properties of the obtained composite sorbent toward As(III) and As(V). Different products were formed varying in WTR content as well as in density of alginate matrix. In order to determine the key parameters of the adsorption process, both equilibrium and kinetic studies were conducted. The best properties were exhibited by a sorbent containing 5 % residuals, formed in alginate solution with a concentration of 1 %. In slightly acidic conditions (pH 4.5), its maximum sorption capacity was 3.4 and 2.9 mg g?1 for As(III) and As(V), respectively. At neutral pH, the adsorption effectiveness decreased to 3.3 mg As g?1 for arsenites and to 0.7 mg As g?1 for arsenates. The presence of carboxylic groups in polymer chains impeded in neutral conditions the diffusion of anions into sorbent beads; therefore, the main rate-limiting step of the adsorption, mainly in the case of arsenates, was intraparticle diffusion. The optimal condition for simultaneous removal of arsenates and arsenites from water by means of the obtained composite sorbent is slightly acidic pH, ensuring similar adsorption effectiveness for both arsenic species.  相似文献   
990.
The occurrence of five pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was studied by passive sampling and grab sampling in northern Lake Päijänne and River Vantaa. The passive sampling was performed by using Chemcatcher® sampler with a SDB-RPS Empore disk as a receiving phase. In Lake Päijänne, the sampling was conducted during summer 2013 at four locations near the discharge point of a wastewater treatment plant and in the years 2013 and 2015 at four locations along River Vantaa. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne determined by passive sampling ranged between 1.4–2.9 ng L?1, 15–35 ng L?1, 13–31 ng L?1, 16–27 ng L?1, and 3.3–32 ng L?1, respectively. Similarly, the results in River Vantaa ranged between 1.2–40 ng L?1, 15–65 ng L?1, 13–33 ng L?1, 16–31 ng L?1, and 3.3–6.4 ng L?1. The results suggest that the Chemcatcher passive samplers are suitable for detecting pharmaceuticals in lake and river waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号