首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   7篇
  国内免费   3篇
安全科学   25篇
废物处理   6篇
环保管理   79篇
综合类   35篇
基础理论   78篇
污染及防治   73篇
评价与监测   25篇
社会与环境   22篇
灾害及防治   4篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   12篇
  2016年   15篇
  2015年   10篇
  2014年   10篇
  2013年   28篇
  2012年   16篇
  2011年   24篇
  2010年   14篇
  2009年   14篇
  2008年   27篇
  2007年   16篇
  2006年   12篇
  2005年   16篇
  2004年   5篇
  2003年   16篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有347条查询结果,搜索用时 31 毫秒
171.
 Mesozooplankton community structure in the vicinity of the Prince Edward Islands (PEIs) was investigated during six surveys conducted in late austral summer (April/May) from 1996 to 1999. Zooplankton samples were collected by oblique tows using a Bongo net fitted with 300-μm mesh. Surface temperature, average temperature and chlorophyll a were measured in conjunction with each net tow. The positions of the Sub-Antarctic Front (SAF) and the Antarctic Polar Front (APF), in relation to the islands, were determined by CTD and/or XBT transects to the west of the islands (upstream). Both fronts were characterized by a high degree of latitudinal variation. Changes in position of the fronts occurred rapidly, the SAF moving up to ∼120 km in a 2-week period. Consequently, the oceanographic environment in the vicinity of the PEIs was subject to a high degree of intra- and inter-survey variation. The positions of the SAF and APF appeared to have a significant impact on phytoplankton biomass in the vicinity of the PEIs, possibly through the alteration of local oceanographic flow dynamics. Water retention over the island shelf in 1996, associated with location of the SAF far to the north of the PEIs, corresponded to enhanced chlorophyll-a concentrations (∼1.54 mg m−3). Conversely, when the fronts were close to the islands, as in 1997 and 1999, higher current velocity limited water retention and chlorophyll-a concentrations in the inter-island region were relatively low (∼0.4 mg m−3). Cluster analyses showed that, in many instances, there was greater similarity among zooplankton communities from different surveys than among communities within surveys, indicating that short-term variability exceeded inter-annual variability. The population structure of the copepod Calanus simillimus indicated that there was inter-annual variation in the timing of the biological season. Differences in the population structure of species, and consequently their contribution to abundance and biomass, may therefore have been an important contributor to inter-annual variation in community structure. Evidence is provided of a long-term southward shift in the position of the SAF. It is postulated that this may affect the PEIs by increasing the proportion of allochthonous energy input, because the PEIs now lie in the path of the front, altering the tropho-dynamics of the island ecosystem. Lower mesozooplankton biomass associated with warmer sub-Antarctic water may have important negative consequences for higher trophic levels that depend on mesozooplankton for food. Received: 10 June 2000 / Accepted: 22 September 2000  相似文献   
172.
173.
Anthropogenic climate change is likely to significantly increase human exposure to droughts and floods. It will also alter seasonal patterns of water availability and affect water quality and the health of aquatic ecosystems with various implications for social and economic wellbeing. Policy development for water resource adaptation needs to allow for a holistic and transparent analysis of the probable consequences of policy options for the wide variety of water uses and users, and the existing ecosystem services associated with any stream basin. This paper puts forward an innovative methodological framework for planning development-compatible climate policies drawing on multi-criteria decision analysis and an implicit risk-management approach to the economics of climate change. Its objectives are to describe how the generic methodology could be tailored for analysis of long-range water planning and policy options in developing countries, and to describe the place of climate change considerations in water governance and planning processes. An experimental thought-exercise applying the methodology to water policy development in Yemen provides further insights on the complexity of water adaptation planning. It also highlights the value of conducting sensitivity analysis to explore the implications of multiple climate scenarios, and the importance of accounting for policy portfolios rather than individual policy options. Rather than constituting a tool that can generate clear measures of optimal solutions in the context of adaptation to uncertain climate futures, we find that this approach is best suited to supporting comprehensive and inclusive planning processes, where the focus is on finding socially acceptable paths forward.  相似文献   
174.
Operator-controlled and computer-controlled scanning electron microscopy (CCSEM) are used extensively to characterize particulate matter in environmental media. Analysis in a scanning electron microscope (SEM) coupled with chemical extraction is a potentially powerful tool that is capable of determining how various sample components are associated at the individual particle level. This involves initial characterization in a SEM, after which the material is exposed to a liquid or gas phase reaction for a specified time, and once exposure is concluded, the particles are reanalyzed in the SEM. This particle analysis by difference, or differential individual particle analysis (DIPA), possesses considerable potential for describing the behavior of environmental particles under changing chemical conditions. Here we describe DIPA applications with illustrative examples drawn from the analysis of particulate matter modified by reactions in a fluid environment. In situ DIPA permits the same particles to be analyzed in the SEM before and after modification. Repeated exposure to the same, or different modifying conditions, provides information on the time dependence of specific reactions. Significant numbers of particles can be analyzed using CCSEM, and the same particles can be analyzed after the reaction by accurate sample relocation in the SEM. Ex situ DIPA, which involves a bulk sample modification, uses CCSEM to characterize significant numbers of particles pre- and postreaction. The CCSEM approach is extremely efficient; recent developments in silicon drift detectors have increased the speed of characteristic X-rays detection, and very large numbers of particles can be analyzed in a short period of time.  相似文献   
175.
We used a coupled social-ecological model to study the landscape-scale patterns emerging from a mobile population of anglers exploiting a spatially structured walleye (Sander vitreus) fishery. We systematically examined how variations in angler behaviors (i.e., relative importance of walleye catch rate in guiding fishing site choices), harvesting efficiency (as implied by varying degrees of inverse density-dependent catchability of walleye), and angler population size affected the depletion of walleye stocks across 157 lakes located near Thunder Bay (Ontario, Canada). Walleye production biology was calibrated using lake-specific morphometric and edaphic features, and angler fishing site choices were modeled using an empirically grounded multi-attribute utility function. We found support for the hypothesis of sequential collapses of walleye stocks across the landscape in inverse proportionality of travel cost from the urban residence of anglers. This pattern was less pronounced when the regional angler population was low, density-dependent catchability was absent or low, and angler choices of lakes in the landscape were strongly determined by catch rather than non-catch-related attributes. Thus, our study revealed a systematic pattern of high catch importance reducing overfishing potential at low and aggravating overfishing potential at high angler population sizes. The analyses also suggested that density-dependent catchability might have more serious consequences for regional overfishing states than variations in angler behavior. We found little support for the hypotheses of systematic overexploitation of the most productive walleye stocks and homogenized catch-related qualities among lakes sharing similar access costs to anglers. Therefore, one should not expect anglers to systematically exploit the most productive fisheries or to equalize catch rates among lakes through their mobility and other behaviors. This study underscores that understanding landscape overfishing dynamics involves a careful appreciation of angler population size and how it interacts with the attributes that drive angler behaviors and depensatory mechanisms such as inverse density-dependent catchability. Only when all of these ingredients are considered and understood can one derive reasonably predictable patterns of overfishing in the landscape. These patterns range from self-regulating systems with low levels of regional fishing pressure to sequential collapse of walleye fisheries from the origin of angling effort.  相似文献   
176.
177.
178.
179.
180.
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号