首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10697篇
  免费   8篇
  国内免费   28篇
安全科学   11篇
废物处理   818篇
环保管理   1349篇
综合类   1027篇
基础理论   3279篇
污染及防治   2114篇
评价与监测   1189篇
社会与环境   944篇
灾害及防治   2篇
  2023年   33篇
  2022年   76篇
  2021年   60篇
  2020年   12篇
  2019年   27篇
  2018年   1488篇
  2017年   1391篇
  2016年   1231篇
  2015年   147篇
  2014年   62篇
  2013年   154篇
  2012年   499篇
  2011年   1397篇
  2010年   732篇
  2009年   644篇
  2008年   937篇
  2007年   1265篇
  2006年   44篇
  2005年   53篇
  2004年   64篇
  2003年   91篇
  2002年   117篇
  2001年   31篇
  2000年   19篇
  1999年   12篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   13篇
  1983年   9篇
  1982年   5篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
641.
Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm?1 after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.  相似文献   
642.
Gaseous nitrogen dioxide (NO2) represents an oxidant that is present in relatively high concentrations in various indoor settings. Remarkably increased NO2 levels up to 1.5 ppm are associated with homes using gas stoves. The heterogeneous reactions of NO2 with adsorbed water on surfaces lead to the generation of nitrous acid (HONO). Here, we present a HONO source induced by heterogeneous reactions of NO2 with selected indoor paint surfaces in the presence of light (300 nm?<?λ?<?400 nm). We demonstrate that the formation of HONO is much more pronounced at elevated relative humidity. In the presence of light (5.5 W m?2), an increase of HONO production rate of up to 8.6?·?109 molecules cm?2 s?1 was observed at [NO2]?=?60 ppb and 50 % relative humidity (RH). At higher light intensity of 10.6 (W m?2), the HONO production rate increased to 2.1?·?1010 molecules cm?2 s?1. A high NO2 to HONO conversion yield of up to 84 % was observed. This result strongly suggests that a light-driven process of indoor HONO production is operational. This work highlights the potential of paint surfaces to generate HONO within indoor environments by light-induced NO2 heterogeneous reactions.  相似文献   
643.
The choice of plant for phytoremediation success requires knowledge of how plants respond to contaminant exposure, especially their roots which are instrumental in supporting rhizosphere activity. In this study, we investigated the responses of plants with different architectures represented by beetroot (Beta vulgaris), a eudicot with a central taproot and many narrower lateral roots, and tall fescue (Festuca arundinacea), a monocot possessing a mass of threadlike fibrous roots to grow in crude oil-treated sand. In this paper, scanning electron microscopy was used to investigate modifications to plant root structure caused by growth in crude oil-contaminated sand. Root structural disorders were evident and included enhanced thickening in the endodermis, increased width of the root cortical zone and smaller diameter of xylem vessels. Inhibition in the rate of root elongation correlated with the increase in cell wall thickening and was dramatically pronounced in beetroot compared to the roots of treated fescue. The latter possessed significantly fewer (p?<?0.001) and significantly shorter (p?<?0.001) root hairs compared to control plants. Possibly, root hairs that absorb the hydrophobic contaminants may prevent contaminant absorption into the main root and concomitant axile root thickening by being sloughed off from roots. Tall fescue exhibited greater root morphological adaptability to growth in crude oil-treated sand than beetroot and, thus, a potential for long-term phytoremediation.  相似文献   
644.
This study presents the performance evaluation of a novel denuder-equipped PM1 (particles having aerodynamic diameter less than 1 μm) sampler, tested during fog-dominated wintertime, in the city of Kanpur, India. One PM1 sampler and one denuder-equipped PM1 sampler were co-located to collect ambient PM1 for 25 days. The mean PM1 mass concentration measured on foggy days with the PM1 sampler and the denuder-equipped PM1 sampler was found to be 165.95 and 135.48 μg/m3, respectively. The mean PM1 mass concentration measured on clear days with the PM1 sampler and the denuder-equipped PM1 sampler was observed to be 159.66 and 125.14 μg/m3, respectively. The mass concentration with denuder-fitted PM1 sampler for both foggy and clear days was always found less than the PM1 sampler. The same drift was observed in the concentrations of water-soluble ions and water-soluble organic carbon (WSOC). Moreover, it was observed that the use of denuder leads to a significant reduction in the PM positive artifact. The difference in the concentration of chemical species obtained by two samplers indicates that the PM1 sampler without denuder had overestimated the concentrations of chemical species in a worst-case scenario by almost 40 %. Denuder-fitted PM1 sampler can serve as a useful sampling tool in estimating the true values for nitrate, ammonium, potassium, sodium and WSOC present in the ambient PM.  相似文献   
645.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   
646.
Based upon 16S rDNA sequence homology, 15 phorate-degrading bacteria isolated from sugarcane field soils by selective enrichment were identified to be different species of Bacillus, Pseudomonas, Brevibacterium, and Staphylococcus. Relative phorate degradation in a mineral salt medium containing phorate (50 μg ml?1) as sole carbon source established that all the bacterial species could actively degrade more than 97 % phorate during 21 days. Three of these species viz. Bacillus aerophilus strain IMBL 4.1, Brevibacterium frigoritolerans strain IMBL 2.1, and Pseudomonas fulva strain IMBL 5.1 were found to be most active phorate metabolizers, degrading more than 96 % phorate during 2 days and 100 % phorate during 13 days. Qualitative analysis of phorate residues by gas liquid chromatography revealed complete metabolization of phorate without detectable accumulation of any known phorate metabolites. Phorate degradation by these bacterial species did not follow the first-order kinetics except the P. fulva strain IMBL 5.1 with half-life period (t½) ranging between 0.40 and 5.47 days.  相似文献   
647.
There is much discussion within the sustainable development community regarding climate stabilization and particularly, finding environmentally equitable ways to address emission reductions. Knowing the current level of emission is only one variable in this complex picture. While the rate of emissions is clearly a problem, the overall increase in GHG concentration in the atmosphere is ultimately the main driver of anthropogenic warming. Therefore, it is also important to understand the cumulative emissions, those which have taken us to the current condition. This research presents a case study of six countries to compare the emissions per capita and cumulative emissions during the past 200 years. It is known that carbon emissions are closely related to economic activities, but here we show that some countries have reached per capita emissions plateaus at different levels while others are still rising. Specifically, one approach toward socioeconomic development, in terms of energy–economy, reaches a plateau at 10 Mt carbon per person, which the United Kingdom and South Korea have attained. The US occupies another emission regime at 20 Mt carbon per person. Developing economies such as India and China are considerably below these levels, and unless they follow other integrated economic/environmental solutions, they will continue to increase their per capita emissions during development.  相似文献   
648.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   
649.
Pinus roxburghii (chir-pine) and Quercus leucothchophora (banj-oak) are dominant forests of mountainous part of the Uttarakhand Himalaya. The continued anthropogenic disturbance is opening the canopy, forming canopy gaps and as a result forest fragments are developing. Thus, the present study aims to analyze variations in species richness and vegetational parameters in relation to canopy gaps in forests. Total species richness was greater in open canopied forest compared to moderate and close canopied forests. In comparison between oak and pine forest, it was greater in oak forest while the proportion of common species was low between oak—pine forests. Mean species richness did not significantly vary from one canopy gap to another as well as in oak and pine dominated forest. This indicated that dominant forest types played an important role to form the community structure. The shrubs richness were greater in closed canopy and between the forests it was greater in pine forest. Tree and shrub density was low in open canopy while herb density was high in moderate canopy. Thus, this study indicated that the dominant canopy species play an important role in deciding the community structures especially the distribution of under canopy species. These parameters should be considered for conservation and maintenance of plant biodiversity of a region.  相似文献   
650.
Based on two comprehensive field studies conducted in California, background concentration (parts per trillion) of N2O (296.0 X 103), SF6 (0.16), CCI2F2 (180.8), CCI3F (103.8), CCI2FCCIF2 (16.3), CCI4 (114.2), CH3CI (952.9), CHCI3 (23.4), CH3I (2.4), CH3CCI3 (84.0), CCI2CCI2 (43.1), CHCICCI2 (14.5) and CH3Br (—) have been reported. These trace constituents were identified using retention data on eight GC columns, their electron attachment properties, and their EC thermal response. All but CHCICCI2 and CH3Br were measurable 100% of the time at both sites. Cryogenic procedures for SF6 ambient measurement were developed and successfully used. By an analysis of worldwide emissions of these trace constituents, their ambient levels, and their atmospheric lifetimes, it was possible to determine their origin (natural or anthropogenic). Our results indicate that 27% of organic chlorine contribution to the troposphere comes from fluorocarbons as opposed to a 73% contribution from the chloro-carbons. Further, the anthropogenic organic content in the troposphere was found to be about twice the natural content. Very high CHCI3 concentrations in onshore ocean waters were measured. Ambient data supporting the anthropogenic origin of CCI4 have been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号