首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3348篇
  免费   30篇
  国内免费   171篇
安全科学   98篇
废物处理   201篇
环保管理   291篇
综合类   593篇
基础理论   784篇
环境理论   2篇
污染及防治   1138篇
评价与监测   241篇
社会与环境   188篇
灾害及防治   13篇
  2023年   19篇
  2022年   70篇
  2021年   39篇
  2020年   25篇
  2019年   37篇
  2018年   116篇
  2017年   50篇
  2016年   77篇
  2015年   84篇
  2014年   93篇
  2013年   269篇
  2012年   89篇
  2011年   164篇
  2010年   143篇
  2009年   152篇
  2008年   163篇
  2007年   188篇
  2006年   144篇
  2005年   118篇
  2004年   145篇
  2003年   138篇
  2002年   115篇
  2001年   240篇
  2000年   144篇
  1999年   71篇
  1998年   40篇
  1997年   47篇
  1996年   33篇
  1995年   40篇
  1994年   43篇
  1993年   41篇
  1992年   30篇
  1991年   35篇
  1990年   28篇
  1989年   32篇
  1988年   20篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   18篇
  1983年   22篇
  1982年   22篇
  1981年   16篇
  1980年   11篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1975年   12篇
  1973年   9篇
  1972年   10篇
排序方式: 共有3549条查询结果,搜索用时 15 毫秒
131.
Phosphate rock samples collected from the Dange Formation within the Sokoto basin were analyzed for trace element constituents using instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRFA) techniques, while natural activity concentrations due to 235U, 232Th, and 40K were determined by gamma-ray spectrometry. The analytical results show that the average concentrations of some toxic elements (As, Sb, Cr, and Zn) in phosphate rocks are not appreciably different from that in agricultural soils. However the U and Th contents are enriched significantly in comparison. The results were used to assess the environmental toxicity of heavy metals and radiation hazard attributable to the direct application of phosphate rock as fertilizer.  相似文献   
132.
Transfer factors (TFs) of some selected radionuclides from ten different Japanese soils to radish have been studied by radiotracer experiments. The geometric mean values of TFs (on a wet weight basis) of radioactive Cs, Sr, Co, Mn and Zn for edible parts of radish (tuber) were 0.0090. 0.029, 0.00094, 0.0034 and 0.067, respectively. TFs for leaf were higher than those for tuber. The geometric mean values of leaf/tuber ratios were 4.1 for Cs, 4.9 for Sr, 1.6 for Co, 11 for Mn and 1.9 for Zn. Most of the Cs TFs obtained for andosol, which is the most common arable soil in Japan, were higher than those for the other soils. This might be due to the high concentrations of organic matter and alophen in andosol. The obtained TFs were compared to reference values of IAEA Technical Report 364.  相似文献   
133.
Many prior studies of nitrogenous waste excretion in marine fish have examined excretion patterns for short time periods, and with relatively coarse sampling schemes (e.g., an initial and a final sample point). Recent studies of a ureotelic marine fish (the gulf toadfish, Opsanus beta) have demonstrated that urea excretion in this species occurs in brief but massive bursts, lasting from 0.5 to 3 h, and often only once per day. The present study sought to determine if prior sampling protocols may have underestimated the amount of urea being excreted by marine fish. A survey of 16 marine species (the teleosts: Myoxocephalus octodecemspinosus, Scophthalamus aquosa, Cyclopterus lumpus, Lophius americanus, Aprodon cortezianus, Cymatogaster aggregatus, Parophrys vetulis, Microstomus pacificus, Hippoglossoides elassodon, Bathyagonus nigripinnus, Ophiodon elongatus, Hemilepidatus spinosus, Icelinus terrius; the elasmobranch: Raja rhina; and the hagfish: Eptatretus stoutii) was undertaken for ammonia-N and urea-N excretion using a long sampling period (48 h) and hourly sample collection. Apart from the obvious exception of an elasmobranch, ammonia excretion was confirmed to be predominant in marine fish, with urea excretion constituting between 1.4 and 23.8% of the total of ammonia plus urea excreted. Notably, no pulses of urea excretion were detected. Despite the relatively low level of urea excretion, expression of urea transporter-like mRNA (detected using the toadfish urea transporter, tUT, cDNA as a probe) was discovered in gills of many of the species surveyed for nitrogen excretion patterns, although no signal was detected in the hagfish. These results suggest that urea excretion takes place through a specific transport pathway. Finally, more detailed analysis of nitrogen excretion in one of the surveyed species, the plainfin midshipman (Porichthys notatus) demonstrates that "total" nitrogen excretion estimated by summing ammonia and urea excretion underestimates true total nitrogen excretion by 37-51%.  相似文献   
134.
Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.  相似文献   
135.
Rapid degradation of butachlor in wheat rhizosphere soil   总被引:16,自引:0,他引:16  
Yu YL  Chen YX  Luo YM  Pan XD  He YF  Wong MH 《Chemosphere》2003,50(6):771-774
The degradative characteristics of butachlor in non-rhizosphere, wheat rhizosphere, and inoculated rhizosphere soils were measured. The rate constants for the degradation of butachlor in non-rhizosphere, rhizosphere, and inoculated rhizosphere soils were measured to be 0.0385, 0.0902, 0.1091 at 1 mg/kg, 0.0348, 0.0629, 0.2355 at 10 mg/kg, and 0.0299, 0.0386, 0.0642 at 100 mg/kg, respectively. The corresponding half-lives for butachlor in the soils were calculated to be 18.0, 7.7, 6.3 days at 1 mg/kg, 19.9, 11.0, 2.9 days at 10 mg/kg, and 23.2, 18.0, 10.8 days at 100 mg/kg, respectively. The experimental results show that the degradation of butachlor can be enhanced greatly in wheat rhizosphere, and especially in the rhizosphere inoculated with the bacterial community designated HD which is capable of degrading butachlor. It could be concluded that rhizosphere soil inoculated with microorganisms-degrading target herbicides is a useful pathway to achieve rapid degradation of the herbicides in soil.  相似文献   
136.
Liang Y  Wong MH 《Chemosphere》2003,52(9):1647-1658
An intensive monthly sampling of water and sediments from 12 sites over 8 months covering wet and dry seasons at Mai Po Marshes Nature Reserve was conducted during June 1997-February 1998. Major organic (C, N and P) and heavy metal pollutants (Cd, Cr, Cu, Ni, Pb, Zn) water and sediment samples were examined. The results showed that Mai Po Marshes were severely polluted by organic matter and heavy metals, and the water from Deep Bay appeared to be the source of pollution. Up to 13-55% chance that the sediments of Mai Po Marshes were classified as moderately to seriously metal contaminated materials, according to the guideline set by Hong Kong Government. Empirical models describing organic matter and heavy metal spatial and seasonal dynamics in the water and sediments were formulated, based on data analysis. During wet season (June-October), more than 58% variations of total P can be explained by ortho-P in water, while ammonia-N explained up to 90% variations of total Kjeldahl nitrogen in water. Throughout the whole sampling period (June-February), there were significant correlations (p<0.01) between total organic C in water. pH in the sediments and salinity in water appeared to be important factors determining heavy metal mobility in sediments, while potential metal release from the sediments is a concern when any oxidizing processes such as flooding or dredging are imposed on sediments.  相似文献   
137.
Changes of copper speciation in maize rhizosphere soil   总被引:1,自引:0,他引:1  
Chemical forms of copper in the rhizosphere and bulk soil of maize were investigated using rhizobox cultivation and sequential extraction techniques. The copper accumulations were also determined. The results demonstrated that there were continuous changes in copper fractionation within the maize rhizosphere. Initially, the amount of exchangeable copper increased before dropping below the initial level after 40 days or so. Carbonate associated copper followed a similar trend of change, but with a slower pace than the exchangeable copper. The increase in carbonate associated copper only become evident after 30 days, with the net loss occurring after 60 days. There were also initial increases in oxide bound copper as well as decreases in the organic matter associated copper, both followed by a turnover after 40-50 days. The accumulation of copper in the maize plant was found to be biomass dependent. The amount of accumulated copper absorbed in the plant material exceeded the initial quantity of the exchangeable copper in the soil, revealing a transformation from less bioavailable to more bioavailable fractions. During cultivation, decreases in redox potential and increases in pH, dissolved organic carbon (DOC), and microbial activity in the maize rhizosphere were observed. The change in copper speciation may result from root-induced changes in DOC, redox potential, and microbial activity in the rhizosphere.  相似文献   
138.
The anthropogenic radionuclides, (90)Sr, (137)Cs and (239+240)Pu, were measured in the water column of the Japan Sea/East Sea during 1997-2000. The vertical profiles of radionuclide concentrations showed: exponential decrease with depth for (90)Sr and (137)Cs, and surface minimum/subsurface maximum for (239+240)Pu. These results do not differ substantially from results reported previously. The area-averaged concentrations of radionuclides in the Japan Sea are higher than those found in the Northwest Pacific Ocean below surface layer showing the accumulation of the radionuclides in the deep waters in the Japan Sea. Concerning spatial distributions, the area of high (137)Cs inventory extends from the Japan Basin into the Yamato Basin. It is suggested that wintertime convection of water, occurring mainly in the Japan Basin, causes the radionuclides to sink. The nuclides then advect into the Yamato Basin after detouring around the Yamato Rise.  相似文献   
139.
Leaves, stem and bark samples from several plant species were collected from tropical forest of Kaiga, in the west coast of India where two nuclear power reactors of 220 MW each have just been commissioned and another two are under construction, and analysed for their (226)Ra, (40)K and (7)Be concentrations. The activities of (226)Ra and (40)K in plants were found to vary in the range BDL-13.2 and 12.0-797.3 Bq kg(-1), respectively. Plants show significant (7)Be activity in leaves, the activity varies in 72.5-1,060.8 Bq kg(-1). Stem and bark of plants show higher levels of (226)Ra and (40)K when compared to leaves. Soil-to-plant transfer factor for (226)Ra and (40)K were found to vary in the range BDL-0.37 and 0.09-5.61, respectively for different plants. The concentration of (226)Ra and (40)K in leaves depends on the age of the leaves.  相似文献   
140.
Different areas in the industrial region of Patancheru near Hyderabad, Andhra Pradesh (A.P), India are contaminated with high concentration of arsenic, which is attributed to industrial source like veterinary chemicals, pharmaceuticals, pesticide industries, etc. Fourteen villages of this area of Patancheru were assessed for arsenic contamination by collecting samples of water (surface and ground), soil, fodder, milk, and vegetables. The total arsenic content in the whole blood, urine, hair, and nails of the residents showing arsenical skin lesions and other clinical manifestations were also studied. To understand the bioavailability of arsenic in this environment and its possible entry into human food chain, speciation studies of arsenic was carried out and the results are presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号