首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
安全科学   1篇
废物处理   7篇
环保管理   8篇
综合类   4篇
基础理论   2篇
环境理论   1篇
污染及防治   8篇
社会与环境   3篇
灾害及防治   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
31.
Irrigated production in the Guadalquivir river basin in Spain has grown significantly over the last decade. As a consequence, water resources are under severe pressure, with an increasing deficit between available supplies and water demand. To conserve supplies, the water authority has reduced the volume of water assigned to each irrigation district. Major infrastructural investments have also been made to improve irrigation efficiency, including the adoption of high technology micro-irrigation systems. Within a context of increasing water scarcity, climate change threatens to exacerbate the current supply-demand imbalance. In this study, the impacts of climate change on irrigation water demand have been modelled and mapped. Using a combination of crop and geographic information systems, maps showing the predicted spatial impacts of changes in agroclimate (climate variables that determine the irrigation requirements) and irrigation need have been produced. The maps highlight a significant predicted increase in aridity and irrigation need. Modelling of irrigation water requirements shows a typical increase of between 15 and 20% in seasonal irrigation need by the 2050s, depending on location and cropping pattern, coupled with changes in seasonal timing of demand.  相似文献   
32.
33.
34.

Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal–oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.

  相似文献   
35.
This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号