The feed additive ractopamine hydrochloride was fortified at four concentrations into batch vials containing soils that differed in both biological activity and organic matter(OM).Sampling of the liquid layer for 14 days demonstrated that ractopamine rapidly dissipated from the liquid layer. Less than 20% of the fortified dose remained in the liquid layer after 4 hr,and recoveries of dosed ractopamine ranged from 8 to 18% in the liquid layer at 336 hr. Sorption to soil was the major fate for ractopamine in soil:water systems, i.e., 42%–51% of the dose at14 days. The major portion of the sorbed fraction was comprised of non-extractables; a smaller fraction of the sorbed dose was extracted into water and acetone, portions which would be potentially mobile in the environment. Partitioning coefficients for all soils suggested strong sorption of ractopamine to soil which is governed by hydrophobic interactions and cation exchange complexes within the soil OM. Ractopamine degradation was observed, but to mostly non-polar compounds which had a higher potential than ractopamine to sorb to soil. The formation of volatiles was also suggested. Therefore, despite rapid and extensive soil sorption,these studies indicated a portion of ractopamine, present in manures used to fertilize soils,may be mobile in the environment via water-borne events. 相似文献
Background, aim, and scope Compared to other micropollutants such as pesticides or pharmaceuticals, less attention has been paid to biocides so far. A prioritisation of the biocides currently used in Switzerland in terms of pollution of waters revealed that quaternary ammonium compounds (QAC), the isothiazolinones chloromethylisothiazolinone and benzisothiazolinone as well as Irgarol exhibit the highest risk potential. The QAC benzalkoniumchloride (BAC) and didecyldimethylammoniumchloride (DDAC-C10) are used in considerable amounts and have a high biological activity. Materials and methods The emissions of selected QAC in waters and soil and the predicted environmental concentrations (PECs) were estimated by means of a substance flow analysis (SFA). The study was based on data from the Swiss products register, on literature, contacts to producers and users as well as on own assumptions. Results and discussion The consumption of BAC (four homologues) and DDAC-C10 in biocidal applications in Switzerland amounts to 90 and 30 tons annually. The most important applications are disinfectants for public health areas, food and feed areas as well as wood preservatives. The total emissions to the environment of all five substances account for approximately 11?t/a. The PECs in surface waters and sediments vary from values slightly lower than the predicted no-effect concentration (PNEC) to roughly three orders of magnitude below the PNEC. However, concentrations above the PNEC are possible at certain locations, particularly downstream of wastewater treatment plants (WWTP) effluents and sewer overflows. Effects on aquatic organisms can therefore not be excluded. Three BAC homologues could not be assessed, as there were no PNEC values available. Conclusions The contribution of emissions from WWTP (punctual emissions) to the environment is only about one tenth and relatively low compared to diffuse emissions. This means that measures for the emission reduction focussing only on end-of-pipe solutions in WWTP will not reduce the emissions significantly. Moreover, for the evaluation of measures, attention has to be paid to the fact that biocides such as the selected QAC are often also applied in non-biocidal applications (e.?g. three times higher volumes in the case of BAC). Recommendations and perspectives SFA serves as a useful tool for early recognition of environmental problems caused by chemicals. This allows recommending appropriate risk reduction measures in the production, the use and the end-of-life phase. It is advisable to use the SFA already in the development stage of chemicals and later on as a quality control tool. The relevant sources of chemicals and sinks in the environment can thus be determined in complex systems, even in absence of extensive measurements or product registers with consumption figures by means of estimations and scenarios. 相似文献
The cardinalfish Siphamia versicolor (Perciformes: Apogonidae) forms a bioluminescent symbiosis with the marine luminous bacterium Photobacterium mandapamensis, harboring the bacteria in a ventral, disc-shaped light organ and using the bacterial light apparently for counterillumination and attracting prey. Little definitive information has been available on the developmental and microbiological events surrounding the initiation of symbiosis, a critical stage in the life history of the fish, in S.versicolor or any of the many other species of bacterially luminous fish. To identify the stage at which light organ formation begins, to determine the origin of cells forming the light organ, and to characterize its bacterial colonization status during development, early developmental stages of S.versicolor obtained and reared from wild-caught mouth-brooding males were examined with histological and microbiological methods. A light organ primordium was not evident in embryos, post-embryos, or pre-release larvae, whereas the light organ began to form within 1 day of release of full-term pre-flexion larvae from the mouths of male fish. Analysis of post-release larvae revealed that the light organ arises from a proliferation and differentiation of intestinal epithelial cells, and that it quickly develops structural complexity, including the formation of chambers and gaps contiguous with the intestinal epithelium. However, the nascent light organ remained uncolonized by the symbiotic bacteria through several days of post-release development, even in the presence of high numbers of the symbiotic bacteria. These results demonstrate that the inception of light organ formation in S.versicolor occurs independently of its symbiotic bacteria and that receptivity to bacterial colonization apparently requires substantial post-release development of the light organ. Larvae therefore most likely acquire their symbiotic bacteria from seawater, during or shortly after the transition from the pre-flexion to the flexion developmental stage. 相似文献
Russian Journal of Ecology - It has been shown that the main drivers of the dynamics of cladoceran and copepod abundances can be predators (fish), the quantity and/or quality of food in terms of... 相似文献
The dynamics of nest-dwelling mites from the nests of the great tit in the protected area of Kamchia Mountain in Northeastern Bulgaria was investigated. The mite fauna inhabiting the nests of great tit differs significantly in terms of the degree of infestation, species richness, abundance and structure of communities in study years. There are statistically significant differences in the specimens’ number between 2014 and the other years 2012, 2013 and 2015. The mite species such as Dermanyssus gallinae, Androlaelaps casalis and Ornithonyssus sylviarum demonstrated significant changes in the abundance over the study years. A relation between the abundance of a species and the species diversity in the nests was not registered. Comparison of the annual dynamics of mites in the nests of great tit and the nests of semi-collared flycatcher for the same period of time and for the same environment, showed similarities—a significant fluctuation in the abundance of mites over the years and differences—in the species richness. Regarding the structure of the communities, both similarities and differences were recorded.
Russian Journal of Ecology - Abstract—The study of the effect of mycorrhiza symbiosis on the transformation of carbon and nitrogen compounds in soils is important in view of the necessity to... 相似文献
Russian Journal of Ecology - A simultaneous analysis of the chronographic variation of the mandible of bank vole (Clethrionomys glareolus Shreb.) in three longitudinally distant populations that... 相似文献
Rainwater characteristics can reveal emissions from various anthropogenic and natural sources into the atmosphere. The physico-chemical characteristics of 44 monthly rainfall events (collected between January and December 2012) from 4 weather stations (Bamenda, Ndop plain, Ndawara and Kumbo) in the Bamenda Highlands (BH) were investigated. The purpose was to determine the sources of chemical species, their seasonal inputs and suitability of the rainwater for drinking. The mean pH of 5 indicated the slightly acidic nature of the rainwater. Average total dissolved solids (TDS) were low (6.7 mg/L), characteristic of unpolluted atmospheric moisture/air. Major ion concentrations (mg/L) were low and in the order K+ 〉 Ca2+ 〉 Mg2~ 〉 Na+ for cations and NO3 〉〉 HCO3 〉 SO] 〉 CI- 〉 PO3- 〉 F- for anions. The average rainwater in the area was mixed Ca-Mg-SO4-CI water type. The CI-/Na+ ratio (1.04) was comparable to that of seawater (1.16), an indication that N a+ and CI originated mainly from marine (Atlantic Ocean) aerosols. High enrichments of Ca2+, Mg2+ and SO2- to Na+ ratios relative to seawater ratios (constituting 44% of the total ions) demonstrated their terrigenous origin, mainly from Saharan and Sahelian arid dusts. The K+/Na+ ratio (2.24), which was similar to tropical vegetation ash (2.38), and NO3 was essentially from biomass burning. Light (〈 100 mm) pre-monsoon and post-monsoon convective rains were enriched in major ions than the heavy (〉 100 mm) monsoon rains, indicating a high contribution of major ions during the low convective showers. Despite the acidic nature, the TDS and major ion concentrations classified the rainwater as potable based on the WHO guidelines. 相似文献