首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1645篇
  免费   17篇
  国内免费   43篇
安全科学   22篇
废物处理   113篇
环保管理   160篇
综合类   141篇
基础理论   295篇
环境理论   2篇
污染及防治   560篇
评价与监测   300篇
社会与环境   108篇
灾害及防治   4篇
  2023年   59篇
  2022年   176篇
  2021年   117篇
  2020年   26篇
  2019年   46篇
  2018年   83篇
  2017年   92篇
  2016年   112篇
  2015年   47篇
  2014年   83篇
  2013年   180篇
  2012年   77篇
  2011年   89篇
  2010年   69篇
  2009年   58篇
  2008年   72篇
  2007年   54篇
  2006年   64篇
  2005年   34篇
  2004年   24篇
  2003年   20篇
  2002年   28篇
  2001年   8篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   4篇
  1988年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   2篇
  1962年   2篇
  1961年   4篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
排序方式: 共有1705条查询结果,搜索用时 515 毫秒
641.
Intra-tidal variability in the transport of materials through the Cochin estuary was studied over successive spring and neap tides to estimate the export fluxes of nutrients and chlorophyll a into the adjoining coastal zone. The results showed that there was a substantial increase in the freshwater flow into the estuary following heavy rains (~126 mm) prior to the spring tide observations. The estuary responded accordingly with a relatively larger export through the Cochin inlet during spring tide over neap tide. Despite an increased freshwater discharge during spring tide, the export fluxes of phosphate and ammonia were high during neap tide due to their input into the estuary through anthropogenic activities. The significance of this study is that the export fluxes from the Cochin estuary could be a major factor sustaining the spectacular monsoon fishery along the southwest coast of India.  相似文献   
642.
In agroecosystems, the annual carbon (C) inputs to soil are one of the most promising greenhouse gas mitigation options. Net primary productivity (NPP) provides the inputs of C in ecosystems that can potentially be sequestered in soil organic matter. In this study, we estimates the C density and accumulation rate in rice–wheat agroecosystem at four sites of Indo-Gangetic Plains and Vindhyan highlands through amalgamation of ground truth (GT) and remote sensing (RS) approach. In addition to this, we validated field-measured aboveground net production (ANP) with remotely sensed SPOT-Vegetation data. ANP of the sites ranged from 6.8 to 11.1 and 3.3 to 8.8 t-C ha?1 year?1 for GT and RS, respectively. Both estimates (GT and RS) were linearly and significantly related with each other (y?=?1.33x???5.82, R 2?=?0.93, P?=?0.04; where x?=?GT ANP and y?=?RS ANP). For the whole region, total NPP (rice?+?wheat) was ranged from 7.9 to 12.5 t-C ha?1 year?1. The C accumulation potential of the present agroecosystems was 9.1 and 1.9 t-C ha?1 year?1 in the form of ANP and belowground NPP (BNP), respectively. The aboveground C stock of agroecosystem allocated in foliage (7.8 %), stem (57.6 %), and grain (35.1 %). Survey about the fate of post-harvested materials indicated that aboveground portion of the crop is almost used completely within the year for different purposes including human consumption and cattle feeding. Therefore, only BNP and litter contribute to long-term C sequestration. Since agroecosystem has enormous potential to sequester C, better management of aboveground portion NPP of the crop may enhance C sequestration potential of agroecosystem.  相似文献   
643.
644.
The present study was aimed to make an assessment of health risk due to pollution and human pathogenic bacteria associated with the recreational and drinking water sources in twin densely populated holy Indian cities Ayodhya and Faizabad. Though physicochemical studies revealed that the water available in the area is under recommended limits for human use, it is unsafe on account of poor microbiological quality of surface and ground water in the region. The most probable number (MPN) test results revealed the preponderance of ≥2,400 total coliforms (TC) (100 ml) − 1 in river, pond, dug well and kund waters. Contrary to that, 94% tube wells, 32% hand pumps and 25% piped supply water were under safe limits having <3 TC (100 ml) − 1. The shallow depth (~40 ft), water logging and presence of septic tanks in the near vicinity are the possible reasons of poor microbial quality of hand pump drinking water. The municipal supply water passes along sewage line where loose connections and/or cracks in pipe lead to mixing and contamination. The significant best quality of tube well water evident from the absence of TC could be attributed to the depth of well ≥150 ft and usually their location away from the habitation. A total of 263 bacteria from 186 water samples were isolated, and at least five genera of enteric bacteria from various water sources were identified morphologically and biochemically as Escherichia coli, Klebsiella sp., Enterobacter sp., Shigella sp. and Salmonella sp. The serotyping of 72 E. coli and 36 Salmonella sp. revealed 51 as E. coli O157 and 20 as Salmonella sp. The presence of enteric pathogens in water sources pose threat to human health and therefore call for immediate remedial measures.  相似文献   
645.
The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.  相似文献   
646.
The reefs in some islands of Andaman and Nicobar suffered severe damage following a tropical storm in the Bay of Bengal off Myanmar coast during 13–17 March 2011. Surveys were conducted at eight sites in Andaman, of which five were located in the Ritchie’s Archipelago where maximum wind speeds of 11 m?s-1 was observed; and three around Port Blair which lay on the leeward side of the storm and had not experienced wind speeds of more than 9 m?s-1. Corals in the shallow inshore reefs were broken and dislodged by the thrust of the waves. Significant damage in the deeper regions and offshore reefs were caused by the settlement of debris and sand brought down from the shallower regions. The fragile branching corals (Acropora sp.) were reduced to rubbles and the larger boulder corals (Porites sp.) were toppled over or scarred by falling debris. The reefs on the windward side and directly in the path of the storm winds were the worst affected. The investigation exposes the vulnerability of the reefs in Andaman to the oceanographic features which generally remain unnoticed unless the damage is caused to the coastal habitats.  相似文献   
647.
Arsenic in the soil and water of eastern districts of Uttar Pradesh (Ballia and Ghazipur) was estimated. Survey results revealed that arsenic in soil samples ranged from 5.40 to 15.43 parts per million (ppm). In water samples, it ranged from 43.75 to 620.75 parts per billion (ppb) which far exceeded the permissible limit of 10 ppb as recommended by the World Health Organization. Maximum concentration of arsenic in water was found in Haldi village of Ballia (620.75 ppb). However, mean arsenic concentration in water followed the order: Karkatpur (257.21 ppb) < Haldi (310.15 ppb) < Sohaon (346.94 ppb) < Dharmarpur (401.75 ppb). In case of soil, maximum arsenic was detected in soil of Sohaon (15.43 ppm). Mean arsenic levels in soils followed the order: Karkatpur (9.24 ppm) < Haldi (9.82 ppm) < Dharmarpur (11.32 ppm) < Sohaon (14.08 ppm). Arsenic levels were higher in soils collected from 15–30 cm depth than 0–15 cm from the soil surface.  相似文献   
648.
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa?=?0.88) for 1990 and 85 % (kappa?=?0.81) for 2009. It was found that the city has expanded over 42.75 km2 within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5?±?2.6 °C increase in land surface temperature, vegetation to fallow 6.7?±?3 °C, fallow to built-up is 3.5?±?2.9 °C and built-up to dense built-up is 5.3?±?2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N–S and NE–SW profiles.  相似文献   
649.
Soil–Water–Atmosphere–Plant (SWAP) version 2.0 was evaluated for its capability to simulate crop growth and salinity profiles at Agra (India) located in a semi-arid region having deep water table and monsoon climate. The data of 12 conjunctive use treatment combinations simulating cyclic and mixing modes of fresh and saline water for wheat were used to calibrate and validate the model. Absolute deviations between the SWAP simulated and observed relative yields during calibration ranged from 2.5 to 2.9 %. A close agreement in the trend and values of measured and simulated soil salinity profiles was observed. Scenario building simulations carried out with the validated SWAP revealed that the maximum crop yields varied from 97 to 99 % with the best available water (EC 3.6 dS m?1) while the minimum ranged from 65 to 79 % in the treatment with all saline water. Other than this, the relative yield varied from 80 to 98 % in 10 other cyclic and mixing mode treatments. It was established that notwithstanding the seasonal build-up of salts due to saline water use, there would be no long-term build-up of salts as leaching during the monsoon season would render the soil profile salt free at the time of sowing of rabi (winter) crops. Thus, short-term field observations could be used in conjunction with SWAP to show that there seems to be an assured long-term sustainability when saline water is used in conjunctive mode with fresh water in monsoon climatic conditions with deep water table. These results are in conformity with the observation that many farmers in India are using saline and fresh water in conjunctive mode on a long-term basis.  相似文献   
650.
The emissions of greenhouse gas (GHG) from soils are of significant importance for global warming. The biological and physico-chemical characteristics of soil affect the GHG emissions from soils of different land use types. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) production rates from six forest and agricultural soil types in the Koteshwar hydropower reservoir catchments located in the Uttarakhand, India, were estimated and their relations with physico-chemical characteristics of soils were examined. The samples of different land use types were flooded and incubated under anaerobic condition at 30 °C for 60 days. The cumulative GHG production rates in reservoir catchment are found as 1.52 ± 0.26, 0.13 ± 0.02, and 0.0004 ± 0.0001 μg g soil?1 day?1 for CO2, CH4, and N2O, respectively, which is lower than global reservoirs located in the same eco-region. The significant positive correlation between CO2 productions and labile organic carbon (LOC), CH4 and C/N ratio, while N2O and N/P ratio, while pH of soils is negatively correlated, conforms their key role in GHG emissions. Carbon available as LOC in the reservoir catchment is found as 3–14% of the total ?C” available in soils and 0–23% is retained in the soil after the completion of incubation. The key objective of this study to signify the C, N, and P ratios, LOC, and pH with GHG production rate by creating an incubation experiment (as in the case of benthic soil/sediment) in the lab for 60 days. In summary, the results suggest that carbon, as LOC were more sensitive indicators for CO2 emissions and significant C, N, and P ratios, affects the GHG emissions. This study is useful for the hydropower industry to know the GHG production rates after the construction of reservoir so that its effect could be minimized by taking care of catchment area treatment plan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号