Environmental Science and Pollution Research - Numerous studies have focused on the response of meiofauna after exposure to polycyclic aromatic hydrocarbons (PAHs), but none has been devoted to... 相似文献
Environmental Science and Pollution Research - Accumulation of heavy metals (HMs) in soil, water and air is one of the major environmental concerns worldwide, which mainly occurs due to... 相似文献
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are highly toxic mycotoxin metabolites that are found as food pollutants, posing health risks to humans and animals. The objective of the current study is to establish a sensitive, reliable method for determining AFM1 and OTA using high-performance liquid chromatography (HPLC) and attempting to assess the efficacy of bentonite, date pit, and chitosan nanoparticles for AFM1 and OTA detoxification from contaminated milk. As revealed, AFM1 was found in 65.7% of analyzed samples ranging from 4.5 to 502 ng/L, while 25.7% of examined samples contained OTA ranging from 1.45 to 301 ng/L. Furthermore, for AFM1 and OTA. The advanced procedure was thoroughly validated by evaluating linearity (R2?>?0.999), LOD (0.9615 and 0.654 ng/L), and LOQ (2.8846 and 1.963 ng/L), recovery (93–95% and 87–91%), as well as precision (≤?1%RSD). The experimental data revealed a higher removal efficiency of bentonite and date pit than chitosan nanoparticles in the case of AFM1 (68%, 56%, and 12%) and OTA (64%, 52%, and 10%), respectively with slight change in nutritional milk components like fat, protein, and lactose. Eventually, it is concluded that bentonite and date pit can be considered efficient adsorbing agents to extract AFM1 and OTA from contaminated milk.
Modern society grapples with large amounts of household waste. The anaerobic digestion of this waste offers a promising source for energy-rich biogas production but generates high toxic effluents that require treatment before reuse or disposal into the environment. This study aimed to investigate three techniques, namely coagulation/flocculation, electro-coagulation, and activated sludge, in terms of efficiency in the treatment of these effluents. It also aimed to assess their toxicity effects on the germination and growth of durum wheat Triticum aestivum L. seeds before and after 6 days of treatment. Activated sludge was most efficient in reducing chemical oxygen demand, turbidity, and conductivity (95.7 %, 15.8 %, and 37.5 %, respectively). The effluent treated with this technique induced a marked delay in germination (low mean time of germination) and a significant reduction in the percentages of seed germination and root and leaf growths. It was also noted to strongly induce lipid peroxidation in roots and leaves, which presumably explained the germination/growth inhibition of the wheat seeds. The effluent also induced marked lipid peroxidation effects and strongly inhibited the activities of butyrylcholinesterase in mice bone marrows. The effluent shows a high ability to inhibit the growth of three microalgae; these endpoints are useful tools to biomonitor the physico-chemical quality of this wastewater. Overall, while no significant alterations were observed in terms of animal and vegetable toxicities when the effluent was treated by coagulation/flocculation, activated sludge treatment proved efficient in reducing the toxicities induced by the untreated effluents. The results indicate that the application of this technique is promising with regards to attaining efficient, eco-friendly, and cost-effective strategies for the management and treatment of household waste. 相似文献
Coal mine spoils (CMSs), the solid wastes originated from the rock formations and soil cover overlying or interbedded with coal seams, are a worldwide environmental management challenge. Previous studies have shown that salinity is of most concern among the CMSs’ environmental impacts, especially in Australia. With increasing concerns from both the governments and communities, there is a real need for the coal mining industry to understand the source, dynamics and management options of CMS salinity. We reviewed the general properties of CMSs from coal mine sites worldwide and the current understanding of the CMS salinity, which are in a limited number of available published reports. Properties (e.g., pH, electrical conductivity and hydraulic conductivity) of studied CMSs varied largely due to its complex lithological origination. A conceptual model was proposed to illustrate the origin, dispersion paths and transformations dynamics of salts in spoils, taking the scenario of a coal mine in Australia as an example. The major factors governing the salt dynamics in CMSs are summarized as mineral weatherability and salt leachability of the spoils. Management of CMS salinity is still a vague area awaiting more extensive studies. Three topics related to the management were explored in the review, which are pre-mining planning, spatial variability of spoil properties and remediation including electrokinetics and phytoremediation. Particularly, based on the geological classification of CMSs and the leachate chemistry of spoils of various sources, a clear relationship between salinity and geounits was established. This association has a potential application in pre-mining planning for the management of salinity from coal mine spoils. 相似文献
Acid orange 52 (AO52), extensively used in textile industries, was decolorized by Pseudomonas putida mt-2. AO52 azoreduction products such as N,N′-dimethyl-p-phenylenediamine (DMPD) and 4-aminobenzenesulfonic acid (4-ABS), were identified in the static degradation mixture. These
amines were identified only in media of static incubation, which is consistent with their biotransformation under shaken incubation
(aerobic conditions). 相似文献