首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   5篇
  国内免费   4篇
安全科学   5篇
废物处理   15篇
环保管理   33篇
综合类   48篇
基础理论   40篇
环境理论   1篇
污染及防治   77篇
评价与监测   25篇
社会与环境   12篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   11篇
  2018年   14篇
  2017年   19篇
  2016年   10篇
  2015年   12篇
  2014年   10篇
  2013年   18篇
  2012年   19篇
  2011年   15篇
  2010年   11篇
  2009年   9篇
  2008年   9篇
  2007年   8篇
  2006年   14篇
  2005年   9篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有256条查询结果,搜索用时 62 毫秒
31.
Environmental Science and Pollution Research - Construction and demolition waste (CDW) and municipal solid waste (MSW) are the waste flows mostly generated at a global level. In developing...  相似文献   
32.
ABSTRACT: Many urban and suburban communities in the Midwest are seeking to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems — a process known as stream naturalization. This paper describes an integrated research program that seeks to develop a scientific and technological framework to support two stream naturalization projects near Chicago, Illinois. The research program integrates theory and methods in fluvial geomorphology, aquatic ecology, hydraulic engineering and social theory. Both the conceptual and the practical challenges of that integration are discussed. Scientific and technical support emphasize the development of predictive tools to evaluate the performance of possible naturalization designs at scales most appropriate to community based projects. Social analysis focuses on place based evaluations of how communities formulate an environmental vision and then, through decision making, translate this vision into specific stream naturalization strategies. Integration of scientific and technical with social components occurs in the context of community based decision making as the predictive tools are employed by project scientists to help local communities translate their environmental visions into concrete environmental designs. Social analysis of this decision making process reveals how the interplay between the community's vision of what they want the watershed to become, and the scientific perspective on what the watershed can become to achieve the community's environmental goals, leads to the implementation of specific stream naturalization practices.  相似文献   
33.
The effect of organic loading on the performance of a mechanically stirred anaerobic sequencing biofilm batch reactor (ASBBR) has been investigated, by varying influent concentration and cycle period. For microbial immobilization 1-cm polyurethane foam cubes were used. An agitation rate of 500 rpm and temperature of 30+/-2 degrees C were employed. Organic loading rates (OLR) of 1.5-6.0gCODl(-1)d(-1) were applied to the 6.3-l reactor treating 2.0 l synthetic wastewater in 8 and 12-h batches and at concentrations of 500-2000mgCODl(-1), making it possible to analyze the effect of these two operation variables for the same organic loading range. Microbial immobilization on inert support maintained approximately 60 gTVS in the reactor. Filtered sample organic COD removal efficiencies ranged from 73 to 88% for organic loading up to 5.4gCODl(-1)d(-1). For higher organic loading (influent concentration of 2000mgCODl(-1) and 8-h cycle) the system presented total volatile acids accumulation, which reduced organics removal efficiency down to 55%. In this way, ASBBR with immobilized biomass was shown to be efficient for organic removal at organic loading rates of up to 5.4gCODl(-1)d(-1) and to be more stable to organic loading variations for 12-h cycles. This reactor might be an alternative to intermittent systems as it possesses greater operational flexibility. It might also be an alternative to batch systems suspended with microorganisms since it eliminates both the uncertainties regarding granulation and the time necessary for biomass sedimentation, hence reducing the total cycle period.  相似文献   
34.
This work presents an analysis of a stirred anaerobic sequencing discontinuous reactor with different substrate feeding strategies resulting in batch, fed-batch/batch and fed-batch operating modes. The reactor, containing granulated biomass, was fed with approximately 2.0L of synthetic domestic wastewater with Chemical Oxygen Demand of nearly 500 mg/L per cycle and operated at 30 degrees C and 50 rpm. Three feeding strategies with a total cycle time of 6 h, including 30-min settling, were adopted: batch mode with a fill cycle of 6 min, a fed-batch/batch mode with fill cycles of 60, 120 and 240 min and fed-batch mode with a fill cycle of 320 min. The system attained average non-filtered and filtered substrate removal efficiency of 78 and 84%, respectively, for all operating conditions, presenting good stability, solid retention and no granule break-up. A first order kinetic model with a residual organic matter concentration was proposed to analyze the influence of the feeding strategy on the performance during a cycle and bicarbonate alkalinity and total volatile acids concentration profiles were also quantified in order to verify the transient stability behavior.  相似文献   
35.
The cell phone market is developing at a rapid speed. Today there are more than 1.6 billion consumers in the world, and the lifetime of a cell phone is less than 2 years. As a consequence, there is an increase in the waste associated to this product, and many alternatives to the disposal of the cell phones are being studied, such as recycling which shows to be the most important. It is crucial to know what materials constitute the cell phone in order to carry out recycling and determine environmental and economical issues. This work presents an evaluation of the cell phone components, characterizing the raw materials and some properties of the recycled materials.  相似文献   
36.
As outfalls from various water reclamation plants, pumping stations, and combined sewer overflow outfalls discharge into the Chicago Area Waterway System (CAWS), an enhanced understanding of the final fate of crucial water quality state variables is of utmost importance. This paper reports the development and application of a 3D water quality model for a modified CAWS combined with the hydrodynamic kernel of Environmental Fluid Dynamics Code (EFDC). The modified CAWS is used to demonstrate the usefulness of the model while eliminating complications beyond the scope of this initial effort. The water quality model developed and presented in this research is a simplistic dissolved oxygen (DO)—biochemical oxygen demand model with the facility to account for the interaction between the water column and the bed. The aforementioned model is applied for the month of May 2009. The results from the hydrodynamic (EFDC) and water quality model is validated with the help of the observed data obtained from United States Geological Survey gaging stations and Metropolitan Water Reclamation District of Greater Chicago monitoring stations present inside the modeled domain. The 3D modeling captured the hydrodynamic and water-quality processes in CAWS in a satisfactory manner. Furthermore, modeling results showed and proved the interdependence of water quality characteristics in Bubbly Creek and CAWS with the effluent concentration from Racine Avenue Pumping Station situated at the head of Bubbly Creek, South Fork of South Branch of Chicago River.  相似文献   
37.
38.
39.
40.
A mechanically stirred anaerobic sequencing batch reactor (ASBR) containing granular biomass was applied to the treatment of a wastewater simulating the effluent from a personal care industry. The ASBR was operated with cycle lengths (tC) of 8, 12 and 24 h and applied volumetric organic loads (AVOL) of 0.75, 0.50 and 0.25 gCOD/L.d, treating 2.0 L liquid medium per cycle. Stirring frequency was 150 rpm and the reactor was kept in an isothermal chamber at 30 °C. Increase in tC resulted in efficiency increase at constant AVOL, reaching 77% at tC of 24 h versus 69% at tC of 8 h. However, efficiency decreased when AVOL decreased as a function of increasing tC, due to the lack of substrate in the reaction medium. Moreover, replacing part of the wastewater by a chemically balanced synthetic one did not yield the expected effect and system efficiency dropped.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号