首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   63篇
  国内免费   265篇
安全科学   67篇
废物处理   21篇
环保管理   58篇
综合类   445篇
基础理论   104篇
污染及防治   132篇
评价与监测   49篇
社会与环境   37篇
灾害及防治   18篇
  2024年   7篇
  2023年   15篇
  2022年   47篇
  2021年   53篇
  2020年   37篇
  2019年   38篇
  2018年   37篇
  2017年   41篇
  2016年   35篇
  2015年   50篇
  2014年   47篇
  2013年   67篇
  2012年   52篇
  2011年   47篇
  2010年   40篇
  2009年   30篇
  2008年   57篇
  2007年   37篇
  2006年   48篇
  2005年   31篇
  2004年   10篇
  2003年   11篇
  2002年   9篇
  2001年   8篇
  2000年   11篇
  1999年   7篇
  1998年   17篇
  1997年   8篇
  1996年   11篇
  1995年   9篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1986年   1篇
排序方式: 共有931条查询结果,搜索用时 33 毫秒
871.
微塑料的环境影响行为及其在我国的分布状况   总被引:2,自引:0,他引:2       下载免费PDF全文
微塑料是一种存在于不同环境介质中的新兴污染物,因其分布范围广、潜在环境危害大,近年来逐渐引起人们的广泛关注.主要分析了微塑料的环境影响行为及机制,以及微塑料在我国污水处理厂、土壤、地表水和海洋等环境介质中的分布特征及影响因素.结果表明,微塑料可通过物理、化学、载体等多重作用危害生态环境健康,甚至微塑料会随着食物链由低营养级向高营养级传递,对人类食品安全造成潜在威胁.我国污水处理系统、土壤及不同水体环境(河流、湖泊、海洋及饮用水等)均受到不同程度的微塑料污染,并且其污染水平总体高于国外,这可能与我国较大的人口密度相关.进一步分析发现,我国环境中微塑料的分布呈现一定的地域差异性,其分布特征不仅与人类活动、地区经济、工业结构与发展水平等因素密切相关,同时污水处理厂的处理处置工艺、环境容量也会影响环境中微塑料的污染水平.针对我国微塑料污染研究现状,建议后续从微塑料的生物毒性效应、时空分布特征及其在环境介质中的迁移转化规律等方面进一步深入研究,以便更加全面地了解我国微塑料污染现状及其潜在的环境生态风险,并为微塑料的污染防控提供指导.   相似文献   
872.
本文设计了双因子(氮负荷升高、有无螺类)受控实验,研究了氮负荷升高(太湖正常氮负荷的3倍)对螺-附着藻-苦草关系的影响.结果表明,氮负荷升高处理明显提高了水体总氮、总溶解氮、叶绿素a等指标的含量,显著增加了附着生物干重,进而抑制了苦草生长;与正常氮负荷处理组相比,3倍氮负荷处理组中苦草的相对生长率、株高和叶片数分别降低了33%、25%和13%.环棱螺降低了附着生物干重和水体叶绿素a含量,明显促进了苦草生长.氮负荷升高和环棱螺存在对水体各项理化指标、附着生物干重和苦草的各项生长指标均无交互作用.此外,氮负荷升高还降低了环棱螺的生长速率.分析认为,氮负荷升高对沉水植物生长的抑制机理主要体现在浮游藻类与附着生物生物量增加的抑制效应;环棱螺的存在虽然在一定程度上减弱了这种效应,但由于氮负荷升高还同时使环棱螺生长率降低,削弱了其对附着生物的牧食压力,从而使得附着生物对苦草生长的抑制作用加强.因此,氮负荷升高使螺-附着藻-沉水植物之间的生态关系失衡,也可能是氮浓度较高的富营养湖泊中沉水植被稀少的重要原因.  相似文献   
873.
The effects of different Planetary Boundary Layer(PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics(CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor–Yamada–Nakanishi–Niino(MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation.  相似文献   
874.
Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei(BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height(PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers(EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2–2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution.The intensity of the sea–land and mountain–valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants,which is strongly affected by the local atmospheric circulations and the distribution of urban areas.  相似文献   
875.
Mercury and its organic compounds have been of severe concern worldwide due to their damage to the ecosystem and human health. The development of effective and affordable technology to monitor and signal the presence of bioavailable mercury is an urgent need. The Mer gene is a mercury-responsive resistant gene, and a mercury-sensing recombinant luminescent bacterium using the Mer gene was constructed in this study. The mer operon from marine Pseudomonas putida strain SP1 was amplified and fused with prompterless luxCDABE in the pUCD615 plasmid within Escherichia coli cells, resulting in pTHE30–E. coli. The recombinant strain showed high sensitivity and specificity. The detection limit of Hg2 + was 5 nmol/L, and distinct luminescence could be detected in 30 min. Cd2 +, Cu2 +, Zn2 +, Ca2 +, Pb2 +, Mg2 +, Mn2 +, and Al3 + did not interfere with the detection over a range of 10− 5–1 mM. Application of recombinant luminescent bacteria testing in environmental samples has been a controversial issue: especially for metal-sensing recombinant strains, false negatives caused by high cytotoxicity are one of the most important issues when applying recombinant luminescent bacteria in biomonitoring of heavy metals. In this study, by establishing an internal standard approach, the false negative problem was overcome; furthermore, the method can also help to estimate the suspected mercury concentration, which ensures high detection sensitivity of bioavailable Hg2 +.  相似文献   
876.
通过对天津大气环境监测现状进行客观分析,并结合天津市整体发展规划、经济与环境发展的新需求,提出了构建天津大气环境监测预警体系的基本框架,将逐步以"三个说清"为目标,全面提升天津大气环境监测综合能力和水平,最终建立了天津大气环境监测预警体系。该研究完善了天津市PM2.5监测及预警能力,能够实现对主要污染源的实时监控,弥补了现有预报预警能力不足的情况,使我市环境空气质量预报更为科学准确,环境空气质量预警信息发布更为及时,能大幅提高天津市对重污染天气的应对能力。  相似文献   
877.
为探究小尺度空间区域土壤重金属的污染特征、风险和来源,以广东省揭阳市榕城区为例,运用富集系数、污染负荷指数、生态风险评价模型、健康风险评价模型进行风险评价,结合相关性分析、空间分析和正定矩阵因子分解(PMF)模型进行来源解析.结果表明,土壤中ω(Cr)、ω(Hg)、ω(As)、ω(Pb)、ω(Ni)、ω(Cd)、ω(Cu)和ω(Zn)的均值分别为54.87、0.25、8.35、56.00、15.38、0.35、30.56和124.23 mg ·kg-1,均超过广东省土壤背景值;Cr、As、Pb和Ni无富集,Zn和Cu轻微富集,Hg和Cd中等富集;污染负荷指数的均值为2.37,总体上属于重度污染水平,8种元素处于不同的污染水平.研究区土壤重金属整体处于重度生态风险,其中Hg和Cd属于强烈生态风险,其他元素属于轻微生态风险.不同元素在3种暴露途径下产生的非致癌风险处于可接受范围;成人和儿童的致癌风险分别为9.81E-05和5.59E-04,Cr和As是致癌风险的主要贡献者,需重点关注.研究区土壤重金属共有4种主要来源:交通来源(37.02%)、成土母质来源(18.53%)、大气沉降来源(26.49%)和工业来源(17.96%).  相似文献   
878.
● Wastewater MPs exhibited resistomes and therefore health threats. ● High density of alkB gene indicates both HDPE and PET can be utilized by microbes. ● Plastics and waters actively selected and shaped the plastispheres over time. ● A broader phylogenetic spectrum of MHET-degrading microorganisms was annotated. The daily use of plastics presents a serious pollution issue due to their extremely slow degradation. Microplastics and the biofilm that grows on plastics (i.e., the plastisphere) are important subsets of plastic wastes. Many studies have been conducted to reveal the structures of the plastispheres, the driving factors for the formation of the plastisphere, and the ability of the plastispheres to degrade plastics in a variety of water bodies. However, the plastispheres related to wastewater are understudied. In this study, we used a microcosmic strategy to study the evolution of the plastispheres associated with microplastics (MPs) over time in wastewater. We found that plastic materials and water sources did not actively select and shape the plastispheres at an early stage, but the active selection for a unique niche of the plastisphere occurred after 14 d of growth. In addition, we confirmed that the alkB gene was densely present, and metagenomics showed some additional chemical reactions, which suggests that MPs are consumed by the microbes in the plastispheres. Additionally, metagenomics identified some metagenome-assembled genomes (MAGs) associated with high-density polyethylene (HDPE) and polyethylene terephthalate (PET). The identification of HDPE-associated MAGs and PET-associated MAGs further supports the notion that the selection for a unique niche of the plastisphere is driven by plastic materials and water sources (in this study, after 14 d of growth). Our discoveries bring new views on the behavior of the wastewater-associated plastisphere, especially how long it takes a wastewater plastisphere to form.  相似文献   
879.
• A fine fibre (40–60 nm diameter) interlayer (~1 µm thickness) was electrospun. • Fine fibre interlayer promoted formation of defect-free dense polyamide layer. • FO membrane with dual-layer substrate had less organic fouling potential. • High reverse salt flux accelerated organic fouling on FO membrane. Nanofibre-supported forward osmosis (FO) membranes have gained popularity owing to their low structural parameters and high water flux. However, the nanofibrous membranes are less stable in long-term use, and their fouling behaviours with foulants in both feed solution (FS) and draw solution (DS) is less studied. This study developed a nanofibrous thin-film composite (TFC) FO membrane by designing a tiered dual-layer nanofibrous substrate to enhance membrane stability during long-term usage and cleaning. Various characterisation methods were used to study the effect of the electrospun nanofibre interlayer and drying time, which is the interval after removing the M-phenylenediamine (MPD) solution and before reacting with trimesoyl chloride (TMC) solution, on the intrinsic separation FO performance. The separation performance of the dual-layer nanofibrous FO membranes was examined using model foulants (sodium alginate and bovine serum albumin) in both the FS and DS. The dual-layer nanofibrous substrate was superior to the single-layer nanofibrous substrate and showed a flux of 30.2 L/m2/h (LMH) when using 1.5 mol/L NaCl against deionised (DI) water in the active layer facing draw solution (AL-DS) mode. In the fouling test, the water flux was effectively improved without sacrificing the water/solute selectivity under the condition that foulants existed in both the FS and DS. In addition, the dual-layer nanofibrous TFC FO membrane was more robust during the fouling test and cleaning.  相似文献   
880.
• Quantification of efficiency and fairness of abatement allocation are optimized. • Allocation results are refined to the different abatement measures of enterprises. • Optimized allocation results reduce abatement costs and tap the abatement space. • Abatement suggestions are given to enterprises with different abatement quotas. For achieving air pollutant emission reduction targets, total pollutant amount control is being continuously promoted in China. However, the traditional pattern of pollutant emission reduction allocation regardless of economic cost often results in unreasonable emission reduction pathways, and industrial enterprises as the main implementers have to pay excessively high costs. Therefore, this study adopted economic efficiency as its main consideration, used specific emission reduction measures (ERMs) of industrial enterprises as minimum allocation units, and constructed an enterprise-level pollutant emission reduction allocation (EPERA) model with minimization of the total abatement cost (TAC) as the objective function, and fairness and feasibility as constraints for emission reduction allocation. Taking City M in China as an example, the EPERA model was used to construct a Pareto optimal frontier and obtain the optimal trade-off result. Results showed that under basic and strict emission reduction regulations, the TAC of the optimal trade-off point was reduced by 46.40% and 45.77%, respectively, in comparison with that achieved when only considering fairness, and the Gini coefficient was 0.26 and 0.31, respectively. The abatement target was attained with controllable cost and relatively fair and reasonable allocation. In addition, enterprises allocated different emission reduction quotas under different ERMs had specific characteristics that required targeted optimization of technology and equipment to enable them to achieve optimal emission reduction effects for the same abatement cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号