首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  国内免费   3篇
安全科学   6篇
废物处理   13篇
环保管理   5篇
综合类   9篇
基础理论   16篇
污染及防治   26篇
评价与监测   28篇
社会与环境   4篇
  2023年   2篇
  2022年   11篇
  2021年   15篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  1994年   1篇
  1966年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
81.
Phosphorus (P) leaching from a sandy soil was investigated in the presence of modified and unmodified clay minerals and nanoparticles (NPs). Compared with control soil, amended soil with NPs had the highest percentage of P retention than amended soil with clay minerals. Among the adsorbents used, the highest percentage of P retention was produced by Al2O3-chitosan while the lowest percentage of P retention was by zeolite. Data measured for P leaching after using adsorbents were used to predict P leaching using transport model. PHREEQC model was able to model P leaching from control and amended soil. After leaching, P values in control and amended soil were fractionated by a sequential extraction procedure. Concentration of P in Ca-bound fraction (HCl–P) after application of modified and unmodified clay minerals and NPs (except TiO2 and Al2O3) increased and decreased, respectively. Saturation indices (SIs) and P speciation were assessed using the Visual MINTEQ version 2.3 program. According to the SIs, leaching P from control and amended soil with different adsorbent was controlled by dissolution of hydroxyapatite. The results indicated that used adsorbents can reduce P leaching from the sandy soil. Thus, retention of P by amended soil reduced a risk in terms of groundwater contamination with P.  相似文献   
82.
Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus reducing atmospheric C concentration), as well as to select more appropriate species during forestation plan management at least in the north of Iran.  相似文献   
83.
The heavy metal (Pb, Cd, Cr, and Ni) content of a fish species consumed by the Sistan population and its associated health risk factors were investigated. The mean concentrations of Pb, Cd, and Cr were slightly higher than the standard levels. The Ni content of fish was below the maximum guideline proposed by the US Food and Drug Administration (USFDA). The average estimated weekly intake was significantly below the provisional tolerable intake based on the FAO and WHO standards for all studied metals. The target hazard quotients (THQ) of all metals were below 1, showing an absence of health hazard for the population of Sistan. The combined target hazard quotient for the considered metals was 26.94 × 10?3. The cancer risk factor for Pb (1.57 × 10?7) was below the acceptable lifetime carcinogenic risk (10?5). The results of this study reveal an almost safe level of Pb, Cd, Cr, and Ni contents in the fish consumed by the Sistan population.
Graphical abstract ?
  相似文献   
84.
In this research, montmorillonite nanoclay (MNC) and vermiculite were used to adsorb ammonium (NH4 +) from simulated wastewater. The effect of organic acids, cations, and anions on adsorption of NH4 + was also studied using batch experiments. The presence of organic acids significantly decreased the NH4 + adsorption using both adsorbents and the reduction followed the order of citric acid > malic acid > oxalic acid. The presence of cations in wastewater could decrease the adsorption of NH4 + and the ion exchange selectivity on the MNC and vermiculite followed the orders Mg > Ca ≥ K > Na and Mg > > Ca > Na > K, respectively. Adsorption of NH4 + by adsorbents in the presence of sulfate (SO4) was higher than those in the presence of phosphate (PO4) and chloride (Cl) anions. Results indicated that MNC and vermiculite had good potential for NH4 + removal depending on adsorbent dosage, pH, contact time, and initial NH4 + concentration. The effect of pH on removal of NH4 + indicated that MNC would be more appropriate as the adsorbent than vermiculite at low pH values. Kinetic analysis demonstrated that the rate-controlling step adsorption for NH4 + by MNC and vermiculite was heterogeneous chemisorption and followed the pseudo-second-order model. The desorption experiments indicated that the adsorption of NH4 + by adsorbents was not fully reversible, and the total recovery of adsorbed NH4 + for MNC and vermiculite varied in the range of 72 to 94.6% and 11.5 to 45.7%, respectively. Cation exchange model (CEM) in PHREEQC program was used to simulate NH4 + adsorption. Agreement between measured and simulated data suggested that CEM was favored in simulating adsorption of NH4 + by clay minerals. The results indicated that MNC and vermiculite have good performance as economic and nature-friendly adsorbents that can ameliorate the water and environment quality.  相似文献   
85.
86.
Introduction. Studying human errors as a risk factor in the occurrence of accidents is necessary. Thus, the aim of this study was to identify, predict and control human errors in industrial control units. Method. This is a case study carried out using SHERPA in the first unit of Zagros Methanol of Asalooyeh, Iran, and its subunits. To collect the required data, various methods were used: observing, interviewing processing specialists and control unit operators, and studying technical documents and records. Results. In total, 222 human errors were identified in various occupational tasks. This study showed that 48.62% of them were action errors, 31.97% were checking errors, 6.75% were retrieval errors, 11.70% were communication errors and 0.90% were selection errors. Conclusion. It can be inferred that this method is appropriate for different industries, and it is useful for identifying human errors leading to hazardous accidents.  相似文献   
87.
This study aimed to investigate the genotoxic potential of chemicals present along the course of the river Nile using frequencies of micronuclei (MN) and nuclear lesions (NL) in erythrocytes of Nile tilapia Oreochromis niloticus niloticus and African catfish Clarias gariepinus, as biomarkers. Results showed that most of the physicochemical parameters detected and heavy metal concentrations were significantly higher in the water collected from the estuaries of the river Nile compared to other sites of the upper Nile. The frequencies of MN and NL in peripheral blood erythrocytes of Nile tilapia and African catfish were significantly higher in estuary sites in Damietta and Rosetta compared to upper sites. The lowest level of genotoxicity was observed at two sites (Aswan and Kena), considered to be less contaminated. Our results suggested that higher frequencies of MN and NL determined at Damietta and Rosetta sites may be indicative of damage produced by pollutants in these areas. The most remarkable result was that MN and NL frequencies appear to be strongly related to water quality at different sites examined, indicating that MN frequencies may serve as a reliable biomarker for testing genotoxicity in situ. The positive correlation between MN and NL induction suggested that NL may be a useful complementary assay for genotoxicity analyses when fish are used as experimental animals. It was also found that seasonal variations in MN and NL frequencies might contribute to a better understanding of genotoxic responses in the field. The use of fish as indicator organisms for monitoring the presence of genotoxic-inducing contaminants in the environment seemed justified because the effects of exposure to a “complex mixture” such as river water were obtained. Nile tilapia appears to be a more suitable bioindicator species than African catfish in studying genotoxic chemical pollution in the river Nile attributed to a higher sensitivity.  相似文献   
88.
89.
Environmental Science and Pollution Research - The use of organic and inorganic phosphorus (P) fertilizers in agricultural soils is very common, and few studies have been conducted to...  相似文献   
90.
Dilute sulfuric acid pretreatment was used to improve the biomethane production from wheat plant (WP) via mesophilic anaerobic digestion. The pretreatments were performed at 121°C for different time durations of 10, 30, 60, and 120 min. The maximum methane yield of 302.4 mL/g volatile solids (VS) was obtained after the pretreatment for 120 min, which was 15.5% higher than that of the untreated WP. The highest amounts of lignin removal (15.2%) and xylan degradation (91.5%) were also achieved after this pretreatment. The pretreatment for 60 min enhanced the methane yield by 8.9%, while the pretreatments for 10 and 30 min had no positive effects on the methane yield. All of the pretreatments significantly removed the hemicelluloses. Moreover, the qualitative analysis of the untreated and pretreated WP structure showed significant reduction in the crystallinity index accompanied by the destruction of surface layers of WP structure after pretreatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号