首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17469篇
  免费   90篇
  国内免费   244篇
安全科学   159篇
废物处理   1144篇
环保管理   2097篇
综合类   2266篇
基础理论   5000篇
污染及防治   3676篇
评价与监测   1584篇
社会与环境   1829篇
灾害及防治   48篇
  2023年   59篇
  2022年   132篇
  2021年   105篇
  2020年   67篇
  2019年   101篇
  2018年   1580篇
  2017年   1492篇
  2016年   1379篇
  2015年   273篇
  2014年   270篇
  2013年   702篇
  2012年   726篇
  2011年   1678篇
  2010年   986篇
  2009年   922篇
  2008年   1250篇
  2007年   1591篇
  2006年   312篇
  2005年   310篇
  2004年   320篇
  2003年   338篇
  2002年   363篇
  2001年   353篇
  2000年   228篇
  1999年   118篇
  1998年   95篇
  1997年   84篇
  1996年   108篇
  1995年   126篇
  1994年   97篇
  1993年   85篇
  1992年   90篇
  1991年   92篇
  1990年   79篇
  1989年   71篇
  1988年   69篇
  1987年   75篇
  1986年   52篇
  1985年   63篇
  1984年   73篇
  1983年   67篇
  1982年   58篇
  1981年   64篇
  1980年   47篇
  1979年   46篇
  1977年   38篇
  1976年   36篇
  1974年   34篇
  1973年   43篇
  1972年   51篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
921.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
922.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   
923.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
924.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   
925.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
926.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   
927.
Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.  相似文献   
928.
The utilization of the coffee husk fiber (CHF) from the coffee industry as a reinforcing filler in the preparation of a cost-effective thermoplastic based composite was explored in this study. The chemical composition and thermal properties of the CHF were investigated and compared with those of wood fiber (WF). CHF proved to be mainly composed of cellulose, hemicellulose and lignin, and exhibited similar thermal behavior to WF. High density polyethylene (HDPE) composites with CHF loadings of from 40 to 70% were prepared using melt processing and extrusion. The processing properties, mechanical behavior, water absorption and thermal performance of these composites were investigated. The effect of maleated polyethylene (MAPE) used as a coupling agent on the composite was explored. The experimental results showed that increasing the CHF loading in the HDPE matrix resulted in an increase in the modulus and thermal properties of the composites, but resulted in poor water resistance. The addition of a 4% MAPE significantly improved the interfacial behavior of the hydrophilic lignocellulosic fiber and the hydrophobic polymer matrix.  相似文献   
929.
The effects of three compounded curing agents on the properties and performance of the urea-formaldehyde (UF) resin were investigated in this study. The compounded curing agents were prepared by mixing ammonium chloride with hexamethylenetetramine, citric acid, and oxalic acid respectively at a ratio of 1:1, named N-H, N–CA, and N–OA, respectively. The curing process, crystallinity, and physical properties were measured, and the three-ply plywood was fabricated to measure its prepress strength, wet shear strength, and formaldehyde emission. Results showed that the compounded curing agents N–CA and N–OA enhanced the initial viscosity, crosslinking density and thermal stability of UF resin. Additionally, the prepress strength of the plywood bonded by UF resin with N–CA and N–OA increased by 82 and 111% respectively compared to the UF resin with NH4Cl, and the wet shear strength increased by 14 and 16%, the formaldehyde emission decreased by 19 and 42% respectively. However, owing to the short pot-life of these curing agent limited their storage time, the curing agents N–CA and N–OA should be applied to fabricate plywood in winter for obtaining a better bond strength and a lower formaldehyde emission. While the UF resin with N–HT showed a suitable pot-life, so it could be applied to fabricate plywood in summer for long time storage and avoiding procuring problem.  相似文献   
930.
Cassava starch waste hydrolysates (CSWHs) with different degrees of polymerisation, i.e., CSWHs-1, CSWHs-2 and CSWHs-3, were prepared through the hydrolysis of cassava starch waste with thermostable a-amylase from Thermococcus sp. HJ21. The prepared CSWHs were then used as a carbon source for curdlan production with Alcaligenes faecalis ATCC 31749. The amount of curdlan produced and the glucosyltransferase activity during curdlan synthesis increased more obviously when CSWHs-2 was used as the carbon source than when glucose was used. Using both carbon sources, the maximum curdlan production was observed at day 5, and the maximum glucosyltransferase activity was observed at day 4. Glucosyltransferase activity decreased thereafter, and biomass continued to increase until the end of the experiment (day 6). Results indicated that the enhanced curdlan production with CSWHs as the carbon source was highly correlated with glucosyltransferase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号