首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   1篇
安全科学   9篇
废物处理   5篇
环保管理   9篇
综合类   13篇
基础理论   18篇
污染及防治   34篇
评价与监测   13篇
社会与环境   6篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   11篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
71.
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.  相似文献   
72.
In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm(-3) and 20,000 cm(-3), whereas the summer min is approximately 5000-6000 cm(-3). In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4-10. The winter maximum in both Rome and Barcelona is close to 100,000 cm(-3), whereas the summer minimum is > 10,000 cm(-3). During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations.  相似文献   
73.
The aim of this study was to compare the personal exposure to particles and bioaerosols with that measured by stationary samplers in the main microenvironments, i.e., the home and the workplace. A random sample of 81 elementary school teachers was selected from the 823 teachers working for two councils in eastern Finland for the winter time measurement period. Bioaerosol and other particles were collected on filters by button samplers using personal sampling and microenvironmental measurements in homes and workplaces. The 24-hour sampling period was repeated twice for each teacher. Particle mass, absorption coefficient of the filter and the concentration of viable and total microorganisms were analyzed from each filter. In this paper, the study design, quality assurance principles and results of particle and bioaerosol exposure are described. The results show that particle mass concentrations, absorption coefficient and fungi were higher in personal exposure samples than in home and workplace samples. Furthermore, these concentrations were usually lower in the home than in the workplace. Bacterial concentrations were highest in heavily populated workplaces, while the viable fungi concentrations were lowest in workplaces. The fungi and bacteria results showed high variation, which emphasises the importance of quality assurance (duplicates and field blanks) in the microbial field measurements. Our results indicate that personal exposure measurements of bioaerosols in indoor environments are feasible and supplement the information obtained by stationary samplers.  相似文献   
74.
Soil erosion and the invasion of exotic plant species are major constraints to achieve sustainable development around the world. Currently, we find few products devoted concomitantly to combatting soil erosion as well as the establishment of unwanted exotic plants. In this paper, we introduce a new product, called herein a bioblanket, that protects the soil and impedes the establishment of exotic plant species. This product is of simple design, and to manufacture it, we use two biodegradable materials: jute tissue and grass wastes. We designed this product to combat soil erosion and the germination and establishment of new, unwanted, invasive plant species. In this paper, we describe our evaluation of how successful this product was in terms of improving the chemical attributes of soil. We also identified the product's potentialities and weaknesses by means of strengths, weaknesses, opportunities, and threats (SWOT) analysis. The bioblanket ameliorated the chemical attributes of the soil, as evidenced especially by the neutralization of acidity (8.5%) and aluminum toxicity (33%), and by an increment in nutrients concentration. We argue that after adequate treatment and management, the residues of plants that are normally considered unwanted materials can be transformed into a raw material to control the propagation of unwanted plant species, and concomitantly control soil erosion while improving the chemical conditions of the soil. The improvement of the soil chemical attributes was one of the main positive effects reported through the SWOT analysis. In addition, the SWOT analysis revealed some features that need improvement in future generations of the product, but we argue that these features do not impede the benefits for the use of the product in its present form.  相似文献   
75.
Groundwater dependent ecosystems. Part I: Hydroecological status and trends   总被引:3,自引:0,他引:3  
Groundwater dependent ecosystems (GDEs) include valuable ecosystems such as springs, wetlands, rivers, lakes and lagoons. The protection of these systems and services they provide is highlighted by international agreements, i.e. Ramsar convention on wetlands, and regional legislation, i.e. the European Water Framework Directive. Groundwater provides water, nutrients and a relatively stable temperature. However, the role of groundwater in surface ecosystems is not fully understood. The ecosystem can depend on groundwater directly or indirectly, and the reliance can be continuous, seasonal or occasional. This has implications for the vulnerability of ecosystems, as some may be easily affected by external pressure. Conceptual models and quantitative assessments of how groundwater interacts with the environment are needed. GDEs are also threatened by different land use activities and climate change. Hence, we need to understand how GDEs are affected by changes in groundwater quantity and quality, as severe groundwater changes have been observed in many regions. This study examines key aspects of GDEs (hydrogeology, geochemistry and biodiversity) in order to improve conceptual understanding of the role of groundwater in such ecosystems. The status and baseline of different types of GDEs are discussed, with particular emphasis on past evidence of environmental change and potential thresholds and threats in GDEs in various parts of Europe with different land use, climate and geology.  相似文献   
76.
Groundwater in sufficient amounts and of suitable quality is essential for potable water supplies, crop irrigation and healthy habitats for plant and animal biocenoses. The groundwater resource is currently under severe pressure from land use and pollution and there is evidence of dramatic changes in aquifer resources in Europe and elsewhere, despite numerous policy measures on sustainable use and protection of groundwater. Little is known about how such changes affect groundwater dependent ecosystems (GDEs), which include various aquatic and terrestrial ecosystems above ground and inside the aquifer. Future management must take this uncertainty into account. This paper focuses on multiple aspects of groundwater science, policy and sustainable management. Examples of current management methods and practices are presented for selected aquifers in Europe and an assessment is made of the effectiveness of existing policies such as the European Water Framework Directive and the Habitat Directive in practice and of how groundwaters and GDEs are managed in various conditions. The paper highlights a number of issues that should be considered in an integrated and holistic approach to future management of groundwater and its dependent ecosystems.  相似文献   
77.
The challenge of governing transboundary water resources is expected to increase with climate change and the resulting need to adapt to its impacts such as temperature increase, more precipitation in the wet season and less in the dry season. In a number of transboundary basins, international regimes, and in particular river basin commissions, are emerging to account for this and other challenges. Some basins are, however, rather advanced in terms of developing climate change adaptation strategies, while others are in a more nascent stage. For the two case studies of the Orange-Senqu and Mekong river basins, this paper attempts to explain the different degrees of progress towards climate change adaptation by applying regime effectiveness analysis. First, we analyze, using the Activity Diagram (AD) of the Management and Transition Framework (MTF), at which stage in the climate change adaptation policy formation process each of the two basins is. Then we attempt to explain the different degrees of progress towards adaptation by means of regime effectiveness theory. Variables indicating regime effectiveness are taken from the literature and further developed to suit the context of climate change adaptation. We find that the different degrees of progress can partially be explained by some variables of regime effectiveness such as the characteristics of rules and procedures, organizational structure, the role of riparian countries as well as international context. At the same time, the analysis points to the need for an analysis of additional factors that potentially shape decision-making and policy processes for climate change adaptation in international river basins such as (a) the hydrological, political and socio-economic setting, (b) underlying principles of regional cooperation (or conflict), (c) interests and values of the various actors in the negotiation process and (d) the possible linkages and trade-offs with other policy fields.  相似文献   
78.
Roles of intensive reindeer grazing and several additional land use factors in the reduction in ground lichens (Cladonia spp.) in pastures grazed by the semi-domesticated reindeer have been argued in Finland. Our analysis showed that several factors and processes explain the standing biomass of lichens (during 2005–2008) and the recent changes in this biomass (after 1995–1996) on lichen pastures located in the 20 northernmost herding districts in Finland. The higher the long-term reindeer densities on the lichen pastures the lower was the lichen biomass. The lichen biomass was also strongly affected by the grazing system; the lowest biomass values of lichens were measured in all grazing areas that were used in the snow-free seasons. The lichen biomass in pine forests less than 80 years old and in all mountain type lichen pastures was lower than that in mature and old pine forests. The lichen biomass also decreased as the proportion of arboreal lichen pastures within a district decreased and the proportion of human infrastructure increased. The aerial drift of heavy metals from the Kola Peninsula appeared to reduce lichens in a small north-eastern part of the study area. Increases in summer precipitation and winter temperatures increased the amount of lichens, but increases in summer temperatures and winter precipitation had the opposite effect. Reindeer densities, grazing system, pasture type and the previous abiotic factors were also associated with the reduction in lichen biomass between the inventories. We conclude that several local, regional and even global factors and processes affect the state of reindeer pastures in large and complex grazing ecosystems. Therefore, more comprehensive research and management strategies for the entire reindeer herding environment are needed.  相似文献   
79.
The relative potencies of non-ortho-substituted coplanar polychlorinated biphenyl (PCB) congeners to activate the aryl hydrocarbon receptor (AhR) and to cause the AhR-dependent toxic events are essential for their risk assessment. Since some studies suggested that abundant non-dioxin-like PCB congeners (NDL-PCBs) may alter the AhR activation by PCB mixtures and possibly cause non-additive effects, we evaluated potential suppressive effects of NDL-PCBs on AhR activation, using a series of 24 highly purified NDL-PCBs. We investigated their impact on the model AhR agonist-induced luciferase reporter gene expression in rat hepatoma cells and on induction of CYP1A1/1B1 mRNAs and deregulation of AhR-dependent cell proliferation in rat liver epithelial cells. PCBs 128, 138, and 170 significantly suppressed AhR activation (with IC50 values from 1.4 to 5.6 μM), followed by PCBs 28, 47, 52, and 180; additionally, PCBs 122, 153, and 168 showed low but still significant potency to reduce luciferase activity. Detection of CYP1A1 mRNA levels in liver epithelial cells largely confirmed these results for the most abundant NDL-PCBs, whereas the other AhR-dependent events (CYP1B1 mRNA expression, induction of cell proliferation in confluent cells) were less sensitive to NDL-PCBs, thus indicating a more complex regulation of these endpoints. The present data suggest that some NDL-PCBs could modulate overall dioxin-like effects in complex mixtures.  相似文献   
80.
The aim of this study is to investigate waste streams as a source of recyclable raw material for fiber composite production. Globally, vast volumes of waste are produced daily that are not recycled effectively. In this work, three different raw material sources are examined; industrial, construction and municipal solid waste streams. All three sources produce wastes that are currently underutilized. Usage areas for the waste material include use as a reinforcing fiber, as part of the plastic matrix or as a filler. The industrial sector produces more homogenous waste, while waste from municipalities is mixed. Irregular material flow, the varying condition of the waste and different pretreatments used pose difficulties for recycling. Furthermore, some materials are industry-specific and may be produced in only certain areas. Despite these difficulties, huge amount of potentially useful exploitable waste is available and using different waste streams as a part of wood-plastic composite production can reduce waste volumes disposed to landfill.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号