首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
安全科学   1篇
环保管理   2篇
综合类   2篇
基础理论   8篇
污染及防治   7篇
评价与监测   5篇
社会与环境   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
Nikolay Strigul   《Ecological modelling》2009,220(20):2624-2639
Imitation is one of the central processes underlying learning. Although the mechanisms of imitation at the individual level have received considerable attention, the population effects of imitative behavior have scarcely been investigated. In this paper I address the problem of self-organization at the population level emerging from imitative behavior between individuals. The model considered is a modification of that developed by Durrett and Levin [Durrett, R., Levin, S.A., 2005. Can stable social groups be maintained by homophilous imitation alone? J. Econ. Behav. Organ. 57, 267–286] in investigation of the coexistence of social groups. I modified the previous model in order to approach it in describing not only human societies but also animal populations with simpler cultures. In contrast with the other studies, I do not assume any payoffs related to imitation behavior and the existence of social rank. Individuals are assumed to be of equal rank and to accept opinions of others in proportion to their similarity (homophilous imitation). The symmetrical structure of interactions induces random drift and development of stable self-organized social groups in both homogeneous and spatially distributed societies. This type of self-organization may be widely distributed in natural systems, where imitative behavior takes place. In particular, it can be involved in origins of dialects and ring species.  相似文献   
22.
23.
Vaccari DA  Strigul N 《Chemosphere》2011,84(6):792-797
Various indicators of resource scarcity and methods for extrapolating resource availability are examined for phosphorus. These include resource lifetime, and trends in resource price, ore grade and discovery rates, and Hubbert curve extrapolation. Several of these indicate increasing scarcity of phosphate resources. Calculated resource lifetime is subject to a number of caveats such as unanticipated future changes in resource discovery, mining and beneficiation technology, population growth or per-capita demand. Thus it should be used only as a rough planning index or as a relative indicator of potential scarcity. This paper examines the uncertainty in one method for estimating available resources from historical production data. The confidence intervals for the parameters and predictions of the Hubbert curves are computed as they relate to the amount of information available. These show that Hubbert-type extrapolations are not robust for predicting the ultimately recoverable reserves or year of peak production of phosphate rock. Previous successes of the Hubbert curve are for cases in which there exist alternative resources, which is not the situation for phosphate. It is suggested that data other than historical production, such as population growth, identified resources and economic factors, should be included in making such forecasts.  相似文献   
24.
Regional Environmental Change - The protection of Lake Baikal and the planning of water management measures in the Selenga River Basin require a comprehensive understanding of the current state and...  相似文献   
25.
Concerning the stabilization of greenhouse gases, the UNFCCC prescribes measures to anticipate, prevent, or minimize the causes of climate change and mitigate their adverse effects. Such measures should be cost-effective and scientific uncertainty should not be used as a reason for postponing them. However, in the light of uncertainty about climate sensitivity and other underlying parameters, it is difficult to assess the importance of different technologies in achieving robust long-term climate risk mitigation. One example currently debated in this context is biomass energy, which can be used to produce both carbon-neutral energy carriers, e.g., electricity, and at the same time offer a permanent CO2 sink by capturing carbon from the biomass at the conversion facility and permanently storing it. We use the GGI Scenario Database IIASA [3] as a point of departure for deriving optimal technology portfolios across different socioeconomic scenarios for a range of stabilization targets, focusing, in particular, on new, low-emission scenarios. More precisely, the dynamics underlying technology adoption and operational decisions are analyzed in a real options model, the output of which then informs the portfolio optimization. In this way, we determine the importance of different energy technologies in meeting specific stabilization targets under different circumstances (i.e., under different socioeconomic scenarios), providing valuable insight to policymakers about the incentive mechanisms needed to achieve robust long-term climate risk mitigation.  相似文献   
26.
Every year earthquakes cause substantial economic losses and loss of life in many parts of the world. Earth observations may provide valuable information on spatial damage distribution and through that increase the efficiency of rapid response actions, finally resulting in reduction of earthquake induced losses. However, a methodology for quantitative assessment of the potential value of information in such a context has not yet been developed. That knowledge would be of high importance for planning and development of Earth observation systems on both regional and international levels when aiming at sustainable development goals. In this paper we suggest a stochastic modeling approach to assess the value of information for earthquake rapid response. Our analysis is focused on a rather short time interval after an earthquake occurrence (order of several hours) when there is a maximum need for urgent help to the earthquake victims. We use rescue efficiency as a performance measure of earthquake response actions; this efficiency is described in terms of timely arrival of rescue teams at places, where their help is mostly needed. We quantify the benefit of using spatial damage distribution information in terms of cost reduction/rescue efficiency gains. We intentionally conduct our analysis at a methodological level and do not go deeper into case studies to keep general conclusions traceable. The modeling exercise we present in the paper is a first step towards a more detailed and integrated approach that could contribute to better systematic understanding of earthquake response actions and ultimately improve their efficiency.  相似文献   
27.
Svirezhev's method of dynamic model design by a given “storage-flow” diagram [Svirezhev Y.M., 1997. On some general properties of trophic networks. Ecol. Model. 99, 7–17] is developed and used for investigating dynamic regimes of carbon cycle functioning in a typical boreal transitional bog ecosystem. Ecosystems are often represented by static “storage-flow” diagrams reflecting their structure and matter or energy transfer between components at fixed time moments. Using the data of such diagrams aggregated in ecological field studies one can construct a dynamic model of the ecosystem to predict its future behaviour and to estimate a response to external perturbations—natural and human. Stability of both current equilibrium and possible alternative steady states and more complicated attractors are studied under two types of parameter perturbation: CO2 atmospheric concentration increase initiated by greenhouse effect, and change in the rate of carbon output from dead organic matter and litter which depends on the water table level and possible peat excavation. Calculation of bifurcation curves gives areas in the parameter space where stable functioning of carbon cycle is provided. Steady states can be interpreted as raised bog, meadow, forest and fen. CO2 concentration increase leads the current state of transitional bog to loose stability with appearance of oscillatory dynamics and further evolution to the chaotic attractor. The model is rich by chaotic solutions serving as transition regimes between regular steady and periodic attractors. Another chaotic regime is formed from forest equilibrium and exists in the same area of phase space where current equilibrium is stable.  相似文献   
28.
Sediment samples were collected from Tinishu Akaki River (TAR), Lake Awassa, and Lake Ziway, Ethiopia for determination of mercury. The air-dried samples were analyzed for mercury with a differential atomic absorption spectrometer after thermal evaporation of bound mercury converting it to its atomic form. Certified reference materials (CRMs) of sediments and soils were used to validate the method. The recovery of mercury from CRMs and sediments was in the range of 95–100%. The limit of detection for the determination of mercury was 50?ng?kg?1. The concentration of total mercury in the sediments varied from 3.9 to 110?µg?kg?1 for TAR, 14 to 67?µg?kg?1 for Lake Awassa, and 17 to 110?µg?kg?1 for Lake Ziway. It was found that the total mercury concentrations in all samples were below the United States Environmental Protection Agency guideline of 200?µg?kg?1.  相似文献   
29.
Effects of tungsten on environmental systems   总被引:1,自引:0,他引:1  
Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号