首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
废物处理   4篇
环保管理   13篇
综合类   5篇
基础理论   9篇
污染及防治   45篇
评价与监测   6篇
社会与环境   5篇
  2017年   2篇
  2016年   5篇
  2014年   5篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1996年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
61.
The objectives of this study were to examine the foliar sensitivity to ozone exposure of 12 tree, shrub, and herbaceous species native to southern Switzerland and determine the seasonal cumulative ozone exposures required to induce visible foliar injury. The study was conducted from the beginning of May through the end of August during 2000 and 2001 using an open-top chamber research facility located within the Lattecaldo Cantonal Forest Nursery in Canton Ticino, southern Switzerland (600 m asl). Plants were examined daily and dates of initial foliar injury were recorded in order to determine the cumulative AOT40 ppb h ozone exposure required to cause visible foliar injury. Plant responses to ozone varied significantly among species; 11 species exhibited visible symptoms typical of exposures to ambient ozone. The symptomatic species (from most to least sensitive) were Populus nigra, Viburnum lantana, Salix alba, Crataegus monogyna, Viburnum opulus, Tilia platyphyllos, Cornus alba, Prunus avium, Fraxinus excelsior, Ribes alpinum, and Tilia cordata; Clematis spp. did not show foliar symptoms. Of the 11 symptomatic species, five showed initial injury below the critical level AOT40 10 ppmh O3 in the 2001 season.  相似文献   
62.
In this study, the refuse from 12 landfills of various ages ranging from fresh refuse to material 11 years old was collected, and changes in the bio-stability parameters were determined. The parameters measured included cellulose, lignin, biochemical methane potential (BMP) and volatile solids, along with plastics. These parameters, along with the cellulose to lignin ratio were compared to determine which were most indicative of the bio-stability of the refuse. Lignin and volatile solids measurements were affected by plastics in refuse samples. Plastics increased both lignin and volatile solids measurements by approximately 10%. Cellulose and volatile solids measurements correlated well with age, each other, and with BMP measurements and were therefore considered the best parameters to determine stability. Data for the Riverbend landfill, a landfill with a moisture content of 48%, which is similar to that of bioreactor landfills, showed that degradation was nearly complete after 5 years as indicated by low values for cellulose and BMP.  相似文献   
63.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   
64.
In chemotherapy, various anti-cancer drugs with different mechanisms of action are used and may represent different risk of undesirable delayed side effects in treated patients as well as in occupationally exposed populations. The aim of the present study was to evaluate genotoxic potential of four widely used anti-cancer drugs with different mechanisms of action: 5-fluorouracil (5-FU), cisplatin (CDDP) and etoposide (ET) that cause cell death by targeting DNA function and imatinib mesylate (IM) that inhibits targeted protein kinases in cancer cells in an experimental model with human hepatoma HepG2 cells. After 24 h of exposure all four anti-cancer drugs at non-cytotoxic concentrations induced significant increase in formation of DNA double strand breaks (DSBs), with IM being the least effective. The analysis of the changes in the expression of genes involved in the response to DNA damage (CDKN1A, GADD45A, MDM2), apoptosis (BAX, BCL2) and oncogenesis (MYC, JUN) showed that 5-FU, CDDP and ET upregulated the genes involved in DNA damage response, while the anti-apoptotic gene BCL2 and oncogene MYC were downregulated. On the contrary, IM did not change the mRNA level of the studied genes, showing different mechanism of action that probably does not involve direct interaction with DNA processing. Genotoxic effects of the tested anti-cancer drugs were observed at their therapeutic concentrations that may consequently lead to increased risk for development of delayed adverse effects in patients. In addition, considering the genotoxic mechanism of action of 5-FU, CDDP and ET an increased risk can also not be excluded in occupationally exposed populations. The results also indicate that exposure to 5-FU, CDDP and ET represent a higher risk for delayed effects such as cancer, reproductive effects and heritable disease than exposure to IM.  相似文献   
65.
Although nutrient-rich manure biochars are expected to be an effective heavy metal stabilizer in agricultural and contaminated soils, systematic studies are lacking to predict the influence of manure variety and pyrolysis temperature on metal-binding potentials. In this study, biochars produced from five manure varieties (dairy, paved feedlot, swine solids, poultry litter, and turkey litter) at two pyrolytic temperatures (350 and 700°C) were examined for the stabilization of Pb, Cu, Ni, and Cd in a weathered, acidic Norfolk loamy sand (fine-loamy, kaolinitic, thermic, Typic Kandiudult). Equilibrium concentrations in the aqueous phase were determined for heavy metals (Cu, Ni, Cd, and Pb) and additional selected elements (Na, P, S, Ca, Mg, Al, and K); these were analyzed by positive matrix factorization to quantitatively determine the factors responsible for the biochar's ability to bind the selected heavy metals in soil. Concurrently with the greatest increase in pH and highest equilibrium Na, S, and K concentrations, poultry litter, turkey litter, and feedlot 700°C biochar exhibited the greatest heavy metal retention. In contrast, manure varieties containing disproportionately high (swine) and low (dairy) ash, P, and other elements were the least effective stabilizers. Regardless of the manure type, proton nuclear magnetic resonance analyses showed the removal of leachable aliphatic and nitrogen-containing heteroaromatic functional groups at the higher (700°C) pyrolysis temperature. Consistently greater Cu retention by the 700°C biochar indicated the mobilization of Cu by 350°C biochar-born dissolved organic carbon; however, the influence of other temperature-dependent biochar characteristics cannot be ruled out.  相似文献   
66.
Excessive Cu concentrations in water systems can negatively affect biological systems. Because Cu can form strong associations with organic functional groups, we examined the ability of biochar (an O-C-enriched organic bioenergy by-product) to sorb Cu from solution. In a batch experiment, KOH steam-activated pecan shell biochar was shaken for 24 h in pH 6, 7, 8, or 9 buffered solutions containing various Cu concentrations to identify the effect of pH on biochar Cu sorption. Afterward, all biochar solids from the 24-h shaking period were air-dried and analyzed using X-ray absorption fine structure (XAFS) spectroscopy to determine solid-phase Cu speciation. In a separate batch experiment, biochar was shaken for 30 d in pH 6 buffered solution containing increasing Cu concentrations; the Cu sorption maximum was calculated based on the exponential rise to a maximum equation. Biochar sorbed increasing amounts of Cu as the solution pH decreased from 9 to 6. The XAFS spectroscopy revealed that Cu was predominantly sorbed onto a biochar organic phase at pH 6 in a molecular structure similar to Cu adsorbed on model humic acid (Cu-humic acid [HA]). The XAFS spectra at pH 7, 8, and 9 suggested that Cu was associated with the biochar as three phases: (i) a complex adsorbed on organic ligands similar to Cu-HA, (ii) carbonate phases similar to azurite (Cu(CO)(OH)), and (iii) a Cu oxide phase like tenorite (CuO). The exponential rise equation fit to the incubated samples predicted a Cu sorption maximum of 42,300 mg Cu kg. The results showed that KOH steam-activated pecan shell biochar could be used as a material for sorbing excess Cu from water systems, potentially reducing the negative effects of Cu in the environment.  相似文献   
67.
The main objective of this research was to test the hypothesis that bioavailable protein and, more specifically, the sulfur-containing amino acids within the protein, can be degraded by proteolytic enzymes to produce odor-causing compounds--mainly volatile sulfur compounds (VSCs)--during biosolids storage. To achieve these objectives, samples of digester effluent and cake solids were collected at 11 different wastewater treatment plants in North America, and the samples were analyzed for protein and amino acid content and general protein-degrading enzyme activity. At the same time, cake samples were stored using headspace bottles, the concentration of VSCs were measured using gas chromatography, and olfactometry measurements were made by a trained odor panel. The results showed that the bound cake protein content and methionine content was well-correlated with VSC production and the detection threshold measured by the odor panel.  相似文献   
68.
The Department of Energy’s Savannah River Site is a former nuclear weapon material production and current research facility located in South Carolina, USA. Wastewater discharges from a fuel and nuclear reactor target manufacturing facility released depleted and natural U, as well as other metals into the Tims Branch-Steed Pond water system. We investigated the current dynamics of this system for the purposes of environmental monitoring and assessment by examining metal concentrations, bioavailability, and trophic transfer of contaminants in seven ponds. Biofilm, detritus, and Anuran and Anisopteran larvae were collected and analyzed for stable isotopes (δ 15N, δ 13C) and contaminants of potential concern (COPC) with a focus on Ni, U, and Hg, to examine metal mobility. Highest levels of Ni and U were found in biofilms U (147 and 332 mg kg?1 DW, respectively), while highest Hg levels were found in tadpoles (1.1 mg kg?1 DW). We found intraspecific biomagnification of COPCs as expressed through stable isotope analysis. Biofilms were the best indicators for contamination and Anuran larvae with the digestive tract removed were the best indicators of the specific bioavailability of the focal metals. Monitoring data showed that baseline δ 15N values differed between ponds, but within a pond, values were stable throughout tadpole Gosner stage, strengthening the case to use this species for monitoring purposes. It is likely that there still is risk to ecosystem integrity as COPC metals are being assimilated into lower trophic organisms and even low levels of this mixture has shown to produce deleterious effects to some wildlife species.  相似文献   
69.
In an effort to explore the role of new media technologies in environmental protest rhetoric, this paper examines Greenpeace's Let's Go! Arctic campaign, which opposed Shell's Arctic oil-drilling plans. The campaign produced a body of Internet memes designed to look like Shell's own corporate advertising. Moreover, the viral campaign used various rhetorical techniques that challenged Shell's goals and identity. Greenpeace-generated and user-generated memes cleverly use irony, corporate voice and humor to delegitimize Shell's Arctic efforts. The memes offered messages that mocked corporate practices and corporate messaging while also providing direct protest messages and accessible humor that invited identification against Shell. Thus, the memes collectively encouraged identification with Greenpeace's antidrilling, pro-environment discourse.  相似文献   
70.
The European Economic Community (EEC) has proposed strict limits on emissions of dioxins and furans from hazardous waste incinerators. The proposed limit is 0.1 ng/Nm3, expressed as the 2,3,7,8 TCDD toxic equivalent of 17 specific dioxin and furan congeners. These limits will potentially redefine technology selection and design for combustion, energy recovery, and air pollution control. The EPA has a different approach for controlling emissions of products of incomplete combustion (PICs) and reformation products such as dioxins and furans. Rather than limiting these contaminants individually and quantitatively, EPA proposes controlling them by assuring good combustion as measured by stack emissions of carbon monoxide (CO) and total hydrocarbons (THC).

Dioxins and furans are combustion by-products and emission control relies mainly on control of the combustion process. These compounds can also be reformed from certain precursor compounds and elements in lower temperature regions of the system downstream of the combustion process. Air pollution control technologies have demonstrated the ability to remove dioxins and furans as contaminants on fine particulate.

This paper will discuss the two regulatory approaches, the mechanisms for the formation and reformation of dioxins and furans, and the technologies available to control emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号