首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   0篇
废物处理   4篇
环保管理   13篇
综合类   5篇
基础理论   9篇
污染及防治   45篇
评价与监测   6篇
社会与环境   5篇
  2017年   2篇
  2016年   5篇
  2014年   5篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1996年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
Environmental Science and Pollution Research - This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using...  相似文献   
82.
83.
To explore the feasible treatment alternatives for organic contaminant, especially organic arsenic species in the landfill gas (LFG) condensate, a variety of treatment approaches were examined and evaluated in this study. Biological degradation, conventional and advanced oxidation, and physical absorption showed limited effectiveness to convert the methylated arsenic to inorganic arsenic. Reverse osmosis (RO) was found to be able to remove the organic arsenic and meet the discharge limits. Maximum removal efficiency and cost level were summarized for all treatment approaches tested, which can be a reference for the organic arsenic treatment method selection under different circumstances.  相似文献   
84.
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (-25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.  相似文献   
85.
Characteristics and behavior of raw and digested mixed liquor derived from a membrane bioreactor (MBR) and a full-scale activated-sludge (FSAS) facility were compared. The accumulation of nondegradable chemical oxygen demand in the MBR appears to play an important role in increasing the observed biological yield coefficient (Y(obs)), reducing average floc size, decreasing total suspended solids/total solids and volatile suspended solids/volatile solids (VS) ratios, and reducing specific-oxygen-uptake rates of the mixed liquor relative to FSAS-derived biological solids. Membrane bioreactor sludges exhibited lower VS destruction following 30 days mesophilic-anaerobic and aerobic digestion when compared to FSAS sludges. Significant deterioration in dewatering behavior was observed for the FSAS biosolids after anaerobic digestion and, to a lesser extent, following aerobic digestion. In comparison, digestion had a small affect on dewatering efficiency and conditioner requirements for MBR biosolids. Full-scale facilities using membrane separation may need to tailor digestion and dewatering processes to the specific characteristics of MBR sludges.  相似文献   
86.
The objectives of this research were to elucidate the mechanisms for production and degradation of volatile organic sulfur compounds (VOSCs), key odor causing compounds produced by biosolids. These compounds included methanethiol (MT), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS). A series of experiments were used to probe various pathways hypothesized to produce and degrade these VOSCs. The production of MT was found to mainly occur from degradation of methionine and the methylation of hydrogen sulfide. DMS was formed through the methylation of MT. DMDS was formed by MT oxidation. All three of the VOSCs were readily degraded by methanogens and a cyclic pathway was proposed to describe the production and degradation of VOSCs. The research demonstrated that the main source of VOSCs was the biodegradation of protein within the biosolids and the results provided a framework for understanding the production of odor from anaerobically digested sludges before and after dewatering.  相似文献   
87.
Predators sometimes provide biotic resistance against invasions by nonnative prey. Understanding and predicting the strength of biotic resistance remains a key challenge in invasion biology. A predator's functional response to nonnative prey may predict whether a predator can provide biotic resistance against nonnative prey at different prey densities. Surprisingly, functional responses have not been used to make quantitative predictions about biotic resistance. We parameterized the functional response of signal crayfish (Pacifastacus leniusculus) to invasive New Zealand mud snails (Potamopyrgus antipodarum; NZMS) and used this functional response and a simple model of NZMS population growth to predict the probability of biotic resistance at different predator and prey densities. Signal crayfish were effective predators of NZMS, consuming more than 900 NZMS per predator in a 12-h period, and Bayesian model fitting indicated their consumption rate followed a type 3 functional response to NZMS density. Based on this functional response and associated parameter uncertainty, we predict that NZMS will be able to invade new systems at low crayfish densities (< 0.2 crayfish/m2) regardless of NZMS density. At intermediate to high crayfish densities (> 0.2 crayfish/m2), we predict that low densities of NZMS will be able to establish in new communities; however, once NZMS reach a threshold density of -2000 NZMS/m2, predation by crayfish will drive negative NZMS population growth. Further, at very high densities, NZMS overwhelm predation by crayfish and invade. Thus, interacting thresholds of propagule pressure and predator densities define the probability of biotic resistance. Quantifying the shape and uncertainty of predator functional responses to nonnative prey may help predict the outcomes of invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号