首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15323篇
  免费   515篇
  国内免费   1970篇
安全科学   564篇
废物处理   703篇
环保管理   1640篇
综合类   5201篇
基础理论   3793篇
环境理论   4篇
污染及防治   2996篇
评价与监测   1064篇
社会与环境   1639篇
灾害及防治   204篇
  2024年   28篇
  2023年   151篇
  2022年   410篇
  2021年   421篇
  2020年   387篇
  2019年   320篇
  2018年   906篇
  2017年   930篇
  2016年   873篇
  2015年   485篇
  2014年   586篇
  2013年   867篇
  2012年   829篇
  2011年   1398篇
  2010年   924篇
  2009年   992篇
  2008年   1175篇
  2007年   1304篇
  2006年   465篇
  2005年   416篇
  2004年   325篇
  2003年   434篇
  2002年   443篇
  2001年   302篇
  2000年   270篇
  1999年   173篇
  1998年   163篇
  1997年   121篇
  1996年   96篇
  1995年   103篇
  1994年   84篇
  1993年   82篇
  1992年   75篇
  1991年   57篇
  1990年   67篇
  1989年   52篇
  1988年   41篇
  1987年   31篇
  1986年   31篇
  1985年   32篇
  1984年   42篇
  1983年   43篇
  1982年   34篇
  1981年   43篇
  1980年   30篇
  1979年   31篇
  1978年   28篇
  1976年   28篇
  1975年   26篇
  1972年   26篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
631.
The use of petroleum-derived products should be avoided regarding the principles of green and sustainable chemistry. The work reported herein, is aimed at the liquefaction of pine shavings for the production of an environmentally-friendly polyol suitable to be used in the formulations of sprayable polyurethane foams. The biopolyols were obtained in high yield and were used to replace those derived from fossil sources, to produce more “greener” polyurethane foams and therefore, less dependent on petroleum sources, since the polyol component was substituted by products resulting from biomass liquefaction. The partial and fully exchange of the polyols was accomplished, and the results compared with a reference foam. The foams were afterward, chemical, physical, morphological, and mechanically characterized. The complete replacement of polyether polyol and polyol polyester has presented some similar characteristics as that used as a reference, validating that the path chosen for the development of more sustainable materials is on the right track for the contribution to a cleaner world.  相似文献   
632.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   
633.
Biocomposites of acrylonitrile butadiene rubber (NBR) reinforced with chicken feather fibre (CF) were prepared using dicumyl peroxide (DCP) as vulcanizing agent. Composites with three series of chicken feather fibres were studied i.e., raw (RCF), sterilized (SCF) and alkali treated (ACF). The cure characteristics of composites were studied. The mechanical properties of NBR were found to be improved by the incorporation of chicken feather fibre in all forms. Surface modification of the fibre was done by alkaline treatment to improve the interfacial adhesion and it characterised by FTIR. Better properties are shown by the composites with ACF. The swelling behaviour of the composites in N,N-dimethylformamide, acetonitrile, dimethyl sulfoxide and water were analyzed for the swelling coefficient values. The biodegradable characteristics of CF reinforced NBR composites were studied by soil burial test which indicated that it is an eco-friendly and acceptable material. Scanning electron microscopy studies support the results of mechanical properties. The outcome obtained from this study is believed to assist the development of environmentally–friendly composites especially for specific product applications like oil seals, hoses and automobile bushes etc.  相似文献   
634.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
635.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   
636.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
637.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   
638.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   
639.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
640.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号