首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24658篇
  免费   158篇
  国内免费   126篇
安全科学   374篇
废物处理   1396篇
环保管理   2922篇
综合类   3409篇
基础理论   7237篇
环境理论   4篇
污染及防治   5671篇
评价与监测   2013篇
社会与环境   1824篇
灾害及防治   92篇
  2022年   127篇
  2021年   104篇
  2020年   100篇
  2019年   107篇
  2018年   1612篇
  2017年   1541篇
  2016年   1464篇
  2015年   384篇
  2014年   465篇
  2013年   1207篇
  2012年   917篇
  2011年   1953篇
  2010年   1251篇
  2009年   1141篇
  2008年   1494篇
  2007年   1873篇
  2006年   590篇
  2005年   531篇
  2004年   550篇
  2003年   567篇
  2002年   579篇
  2001年   660篇
  2000年   484篇
  1999年   256篇
  1998年   181篇
  1997年   206篇
  1996年   205篇
  1995年   236篇
  1994年   234篇
  1993年   180篇
  1992年   195篇
  1991年   183篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   159篇
  1983年   148篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 2 毫秒
991.
Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.
  相似文献   
992.
The production of polyhydroxyalkanoates (PHAs) with a high fraction of 3-hydroxyvalerate (3HV) and 3-hydroxy-2-methylvalerate (3H2MV) from mixed culture enriched by valerate-dominant hydrolysate was evaluated in this study. After long-term enrichment, the culture showed strong ability to synthesize 3HV and 3H2MV, even with acetate-dominant substrate. The ultilization of single or mixed iso-/n-valerate by the enriched culture showed that the mixture of iso-valerate and n-valerate was more efficient substrate than any single in terms of balancing microbial growth and PHAs synthesis. Besides, through comparing the kinetics and stoichiometry of the tests supplying valerate and propionate, the enriched culture with equivalent valerate and propionate (1:1 molar ratio) exhibited superior PHAs production performances to pure valerate or propionate, attaining more than 70 mol% of 3HVand 3H2MV. The above findings reveal that valerate-dominant hydrolysate is a kind of suitable substrate to enrich PHAs producing culture with great capability to synthesize 3HV and 3H2MV monomers, thus improving product properties than pure poly(3-hydroxybutyrate) (P3HB); also 3HV and 3H2MV production behaviors can be regulated by the type of odd-carbon VFAs in the substrate.
  相似文献   
993.
Negatively charged carboxymethylated polyethersulfone (CMPES) and positively charged quaternized polyethersulfone (QAPES) ultrafiltration (UF) membranes were prepared by bulk chemical modification and non-solvent induced phase separation method. The effects of PES membrane interfacial electrokinetic property on the bovine serum albumin (BSA) membrane fouling behavior were studied with the aid of the membrane-modified colloidal atomic force microscopy (AFM) probe. Electrokinetic test results indicated that the streaming potential (ΔE) of QAPES membrane was not consistent with its expected IEC value, however, within the pH range of 3–10, the ζ potentials of two charged-modified PES membranes were more stable than the unmodified membrane. When pH value was 3, 4.7 or 9, the interaction behavior between charged PES membrane and BSA showed that there was significant linear correlation between the jump distance r 0 of membrane-BSA adhesion force (F/R) and the ζ potential absolute value. Charged modification significantly reduced the adhesion of PES membrane-BSA, and the adhesion data was good linear correlated with the flux decline rate in BSA filtration process, especially reflected in the CMPES membrane. The above experimental facts proved that the charged membrane interfacial electric double layer structure and its electrokinetic property had strong ties with the protein membrane fouling behavior.
  相似文献   
994.
Observed effects of metal mixtures on animals and plants often differ from the estimates, which are commonly calculated by adding up the biological responses of individual metals. This difference from additivity is commonly referred to as being a consequence of specific interactions between metals. The science of how to quantify metal interactions and whether to include them in risk assessment models is in its infancy. This review summarizes the existing predictive tools for evaluating the combined toxicity of metals present in mixtures and indicates the advantages and disadvantages of each method. We intend to provide eco-toxicologists with background information on how to make good use of the tools and how to advance the methods for assessing toxicity of metal mixtures. It is concluded that statistically significant deviations from additivity are not necessarily biologically relevant. Incorporation of interactions between metals in a model does not on forehand mean that the model is more accurate than a model developed based on additivity only. It is recommended to first use a relatively simple method for effect prediction of uninvestigated metal mixtures. To improve the reliability of toxicity modeling for metal mixtures, further efforts should focus on balancing the relationship between the significance of statistics and the biological meaning, and unraveling the toxicity mechanisms of metals and their mixtures.
  相似文献   
995.
This paper studied the biofilm properties and corrosion behavior of sulfate reducing bacteria (SRB) on stainless steel 316L (SS316L) surface in circulating cooling water system with and without additives including hydroxy ethyl fork phosphonic acid (HEDP), dodecyl dimethyl benzyl ammonium chlotide (1227) and NaClO. Biochemical technique, electrochemical technology, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used. The results show that the extracellular polymeric substance (EPS) in biofilm attached on the SS316L surface mainly contain proteins and polysaccharides, the contents are 98 ug·cm-2 and 635ug·cm-2, respectively. The polysaccharides were cut by 1227 about 80%, while 55% by NaClO. The proteins were reduced by NaClO about 53%, while only 30% by 1227. The potentiodynamic polarization shows that the corrosion potential of SS316L was enhanced from -0.495 V to -0.390 V by the chemical additives, delaying the occurrence of the corrosion. And the corrosion rate was also reduced from 5.19 × 10-3 mm·a-1 to 2.42 × 10-3 mm·a-1. But NaClO still caused pitting corrosion after sterilizing the bacteria, while 1227 can form a protective film on the surface of SS316L. Though HEDP contribute to the bacteria activity, it can enhance the breakdown potential. XPS results confirmed that 1227 can change the value of C:O in the biofilm attached on metal surface, and NaClO can eliminate the existence of amidogen. This study would provide some recommendations for the selection of chemical additives in the thermal power plant.
  相似文献   
996.
A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4 +-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4 +-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRTof 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.
  相似文献   
997.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   
998.
When microalgae are simultaneously applied for wastewater treatment and lipid production, soluble algal products (SAP) should be paid much attention, as they are important precursors for formation of disinfection byproducts (DBPs), which have potential risks for human health. Chlorella sp. HQ is an oleaginous microalga that can generate SAP during growth, especially in the exponential phase. This study investigated the contribution of SAP from Chlorella sp. HQ to DBP formation after chlorination. The predominant DBP precursors from SAP were identified with the 3D excitation-emission matrix fluorescence. After chlorination, a significant reduction was observed in the fluorescence intensity of five specific fluorescence regions, particularly aromatic proteins and soluble microbial by-product-like regions, accompanied with slight shifting of the peak. The produced DBPs were demonstrated to include trihalomethanes and haloacetic acids. As the algal cultivation time was extended in wastewater, the accumulated SAP strengthened the formation of DBPs. The trend for DBP formation was as follows: chloroform>dichloroacetic acid>trichloroacetic acid.
  相似文献   
999.
Eutrophication with a large number of Microcystis aeruginosa commonly occurs worldwide, thereby threatening the aquatic ecosystem and human health. In this study, four kinds of algicides were tested to explore their influence on cell density and chlorophyll-a of M. aeruginosa. Results showed that aluminum silicate agent, which inhibited more than 90% cell growth compared with the control group, demonstrated the strongest inhibition effect immediately on M. aeruginosa growth. Furthermore, the production and release of microcystin (MC)-LR were investigated. Aluminum silicate, CuSO4, and Emma-11 were more effective than pyrogallic acid in disrupting the cells of M. aeruginosa, thereby increasing the extracellular MC-LR concentration. Aluminum silicate caused the highest extracellular MC-LR concentration of more than 45 mg·L–1. Biotoxicity was also detected to evaluate the environmental risks of MC-LR release, which were related to the usages of different algicides. Extracellular MC-LR concentration mostly increased when the biotoxicity of algae solution increased. The experiments were also designed to reveal the effects of physical conditions in riverways, such as natural sunlight, aeration and benthal sludge, on MC-LR degradation. These findings indicated that UV rays in sunlight, which can achieve a MC-LR removal efficiency of more than 15%, played an important role in MC-LR degradation. Among all the physical pathways of MC-LR removal, benthal sludge adsorption presented the optimal efficiency at 20%.
  相似文献   
1000.
This first nationwide survey was conducted to evaluate the overall performance of the circulating fluidized bed (CFB) incineration of municipal solid waste (MSW) in 2014-2015 in China. Total 23 CFB incineration power plants were evaluated. The data for monthly average flue gas emission of particles, CO, NO x , SO2 and HCl were collected over 12 consecutive months. The data were analyzed to assess the overall performance of CFB incineration by applying the Mahalanobis distance as a multivariate outlier detection method. Although the flue gas emission parameters had met the Chinese national emission standards, there were 11 total outliers (abnormal behavior) detected in 6 out of 23 CFB incineration power plants from the perspective of the MSWincineration performance. The results demonstrate that it is more important for a better performance of CFBs to reduce the frequencies of the MSW load changes, rather than the magnitudes of the MSW load changes, particularly reducing the frequencies in the range of 10% and more of the load changes, under the same and stable conditions. Furthermore, the overloading occurs more often than the underloading during the operation of the CFB incineration power plants in China. The frequent overloading is 0% to 30% of the designed capacity. To achieve the stable performance of CFBs in practice, an appropriately designed MSW storage capacity is suggested to build in a plant to buffer and reduce the frequency of the load changes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号