首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1046篇
  免费   83篇
  国内免费   463篇
安全科学   107篇
废物处理   78篇
环保管理   93篇
综合类   693篇
基础理论   153篇
污染及防治   304篇
评价与监测   50篇
社会与环境   51篇
灾害及防治   63篇
  2024年   7篇
  2023年   19篇
  2022年   77篇
  2021年   76篇
  2020年   69篇
  2019年   53篇
  2018年   46篇
  2017年   65篇
  2016年   56篇
  2015年   72篇
  2014年   68篇
  2013年   97篇
  2012年   81篇
  2011年   93篇
  2010年   77篇
  2009年   78篇
  2008年   82篇
  2007年   53篇
  2006年   53篇
  2005年   58篇
  2004年   50篇
  2003年   24篇
  2002年   25篇
  2001年   25篇
  2000年   32篇
  1999年   30篇
  1998年   22篇
  1997年   26篇
  1996年   19篇
  1995年   18篇
  1994年   13篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1986年   5篇
  1985年   1篇
排序方式: 共有1592条查询结果,搜索用时 31 毫秒
241.
池玉蕾  石烜  任童  王晓昌  金鹏康 《环境科学》2021,42(9):4374-4382
为了阐明溶解氧对低碳源城市污水处理系统脱氮除磷性能的影响,研究了供氧区溶解氧浓度分别为2~3、1~2和低于1mg·L-1的运行条件下微生物应对低碳源环境生长与代谢特性的差异.随着供氧区溶解氧浓度的降低利用外碳源和内碳源脱氮量分别升高了20.23%和80.54%,内碳源的除磷利用效率升高了13.89%,进而使低碳源城市污水的脱氮除磷效果得到强化.高通量测序和RDA分析结果表明,降低供氧区溶解氧浓度驱动微生物群落结构的调整,促使脱氮除磷功能微生物(如:Dechloromonas菌属)的丰度显著增加.基于PICRUSt预测分析可知,在低溶解氧浓度的运行环境中微生物与基质利用、能量合成和代谢调控功能相关的基因活性更高,保证了功能微生物在低碳源条件下稳定生长并维持较高的脱氮除磷效率.本研究为提升低碳源城市污水处理系统中脱氮除磷功能微生物的生长提供理论依据.  相似文献   
242.
提出了Zn/Fe体系湿法催化氧化脱除沼气中H2S新工艺,阐述了反应机理、实验装置和工艺流程,考察了各单因素操作条件对H2S脱除效率的影响,在此基础上进行的综合条件实验,脱硫效率都维持在99.6%以上,净化后沼气中H2S含量低于国家标准。过程不消耗任何化工原料,不产生二次污染,体系无降解问题。  相似文献   
243.
探讨了有机物特性及中间产物H2O2在催化臭氧化中的作用。结果表明,有机物在自由基链反应过程中的特性直接影响催化臭氧化的降解效率。当目标有机物是对链反应具有促进作用的甲酸时,自由基引发反应可以明显提高甲酸的臭氧化效率。当目标有机物是对自由基链反应具有抑制剂作用的乙酸时,O3和Fe^2+/O3对乙酸有着相似的降解效率。以上结果表明,自由基引发反应并不是臭氧化降解效率提高的充分条件。另外,当臭氧化过程有H2O2产生时,必须考虑类Fenton反应对臭氧化效率的影响。  相似文献   
244.
冰雪灾害中交通工程的损害类型及原因分析   总被引:3,自引:0,他引:3  
通过对已建及在建的高速公路在冰灾中的损害调查,详细列出了损害的类型并进行了原因分析。并将此次灾难中暴露出的设计、施工和管理方面的问题进行了分解。  相似文献   
245.
The Las Vegas Valley metropolitan area is one of the fastest growing areas in the southwestern United States. The rapid urbanization has presented many environmental challenges. For instance, as population growth and urbanization continue, the supply of sufficient clean water will become a concern. In addition, the area is also experiencing the longest drought in history, and the volume of water storage in Lake Mead, the main fresh water supply for the entire region, has been reduced greatly. The water quality in the main stem of the Las Vegas Wash (LVW) and Lake Mead may also be significantly affected. In order to develop effective sustainable management plans, the very first step is to predict the plausible future urbanization and land use patterns. This paper presents an approach to predict the future land use pattern at the LVW watershed using a Markov cellular automata model. The multi-criteria evaluation was used to couple population density as a variable depicting the driving force of urbanization in the model. Moreover, landscape metrics were used to analyze land use changes in order to better understand the dynamics of urban development in the LVW watershed. The predicted future land use maps for the years 2030 and 2050 show substantial urban development in the area, much of which are located in areas sensitive to source water protections. The results of the analysis provide valuable information for local planners and policy makers, assisting their efforts in constructing alternative sustainable urban development schemes and environmental management strategies.  相似文献   
246.
Sanjiang National Nature Reserve (NNR) is a state-owned natural wetland in China that has suffered severe degradation due to cultivation and wetland reclamation by farmers. As a consequence, the conversion of cultivated land to wetlands (CCW) was proposed by the government of Heilongjiang province and the United Nations Development Programme/Global Environment Facility (UNDP/GEF) project team in 2007. We suggest that voluntary participation in the CCW could be an important tool for accomplishing the integrated objectives of wetland conservation and local development. The purpose of this study was to examine the main factors that influence farmers’ willingness to participate in the CCW through a field investigation and a questionnaire. Based on the data from our questionnaire, which provided an effective sample of 310 households in 11 villages, the influencing factors of farmers’ willingness to participate were analyzed through binary logistic regression analyses. It was concluded that age, education, the amount of cultivated land, geographical location, and the perceived benefits and risks were important factors for participation. Furthermore, suggestions for improving the wetland compensation system and providing alternative livelihoods are proposed to strengthen participation.  相似文献   
247.
Environment-friendly nano-catalysts capable of activating peroxymonosulfate (PMS) have received increasing attention recently. Nevertheless, traditional nano-catalysts are generally well dispersed and difficult to be separated from reaction system, so it is particularly important to develop nano-catalysts with both good catalytic activity and excellent recycling efficiency. In this work, magnetically recoverable Fe3O4-modified ternary CoFeCu-layered double hydroxides (Fe3O4/CoFeCu-LDHs) was prepared by a simple co-precipitation method and initially applied to activate PMS for the degradation of Rhodamine B (RhB). X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller method (BET), and vibrating sample magnetometer (VSM) were applied to characterize morphology, structure, specific surface area and magnetism. In addition, the effects of several key parameters were evaluated. The Fe3O4/CoFeCu-LDHs exhibited high catalytic activity, and RhB degradation efficiency could reach 100% within 20 min by adding 0.2 g/L of catalyst and 1 mmol/L of PMS into 50 mg/L of RhB solution under a wide pH condition (3.0-7.0). Notably, the Fe3O4/CoFeCu-LDHs showed good super-paramagnetism and excellent stability, which could be effectively and quickly recovered under magnetic condition, and the degradation efficiency after ten cycles could still maintain 98.95%. Both radicals quenching tests and electron spin resonance (ESR) identified both HO? and SO4?? were involved and SO4?? played a dominant role on the RhB degradation. Finally, the chemical states of the sample's surface elements were measured by X-ray photoelectron spectroscopy (XPS), and the possible activation mechanism in Fe3O4/CoFeCu-LDHs/PMS system was proposed according to comprehensive analysis.  相似文献   
248.
Using a bottom-up estimation method, a comprehensive, high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed for the Harbin-Changchun city agglomeration (HCA). The annual emissions for CO, NOx, SO2, NH3, VOCS, PM2.5, PM10, BC and OC during 2017 in the HCA were estimated to be 5.82 Tg, 0.70 Tg, 0.34 Tg, 0.75 Tg, 0.81Tg, 0.67 Tg, 1.59 Tg, 0.12 Tg and 0.26 Tg, respectively. For PM10 and SO2, the emissions from industry processes were the dominant contributors representing 54.7% and 49.5%, respectively, of the total emissions, while 95.3% and 44.5% of the total NH3 and NOx emissions, respectively, were from or associated with agricultural activities and transportation. Spatiotemporal distributions showed that most emissions (except NH3) occurred in November to March and were concentrated in the central cities of Changchun and Harbin and the surrounding cities. Open burning of straw made an important contribution to PM2.5 in the central regions of the northeastern plain during autumn and spring, while domestic coal combustion for heating purposes was significant with respect to SO2 and PM2.5 emissions during autumn and winter. Furthermore, based on Principal Component Analysis and Multivariable Linear Regression model, air temperature, relative humidity, electricity and energy consumption, and the urban and rural population were optimized to be representative indicators for rapidly assessing the magnitude of regional atmospheric pollutants in the HCA. Such indicators and equations were demonstrated to be useful for local atmospheric environment management.  相似文献   
249.
Journal of Polymers and the Environment - Surface modification of cellulose nanocrystals (CNC) is essential for improving their reactivity and adsorption capacity. Oxidation, as a conventional...  相似文献   
250.
• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli. • Global metabolite profiling was used to characterize metabolic disruption patterns. • Key dysregulated metabolites responsive to nano-pollution exposures were found. • Amino acid metabolism and purine metabolism are perturbed at nano-pollutions. Incomplete separation and recycling of nanoparticles are causing undesirable nanopollution and thus raising great concerns with regard to nanosafety. Since microorganisms are important regulator of physiological processes in many organisms, the interaction between nanopollution and microbial metabolomics and the resultant impact on the host’s health are important but unclear. To investigate how typical nanopollution perturbs microbial growth and metabolism, Escherichia coli (E. coli) in vitro was treated with six water-dispersible nanomaterials (nanoplastic, nanosilver, nano-TiO2, nano-ZnO, semiconductor quantum dots (QDs), carbon dots (CDs)) at human-/environment-relevant concentration levels. The nanomaterials exhibited type-specific toxic effects on E. coli growth. Global metabolite profiling was used to characterize metabolic disruption patterns in the model microorganism exposed to different nanopollutants. The percentage of significant metabolites (p<0.05, VIP>1) accounted for 6%–38% of the total 293 identified metabolites in each of the nanomaterial-contaminated bacterial groups. Metabolic results also exhibited significant differences between different nanopollutants and dose levels, revealing type-specific and untypical concentration-dependent metabolic responses. Key metabolites responsive to nanopollution exposures were mainly involved in amino acid and purine metabolisms, where 5, 4, and 7 significant metabolic features were included in arginine and proline metabolism, phenylalanine metabolism, and purine metabolism, respectively. In conclusion, this study horizontally compared and demonstrated how typical nanopollution perturbs microbial growth and metabolomics in a type-specific manner, which broadens our understanding of the ecotoxicity of nanopollutants on microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号