首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21455篇
  免费   180篇
  国内免费   129篇
安全科学   417篇
废物处理   952篇
环保管理   2703篇
综合类   3081篇
基础理论   6357篇
环境理论   5篇
污染及防治   4846篇
评价与监测   1485篇
社会与环境   1816篇
灾害及防治   102篇
  2022年   133篇
  2021年   112篇
  2020年   111篇
  2019年   117篇
  2018年   733篇
  2017年   718篇
  2016年   757篇
  2015年   340篇
  2014年   490篇
  2013年   1318篇
  2012年   701篇
  2011年   1414篇
  2010年   1018篇
  2009年   1056篇
  2008年   1265篇
  2007年   1535篇
  2006年   636篇
  2005年   635篇
  2004年   579篇
  2003年   633篇
  2002年   650篇
  2001年   692篇
  2000年   508篇
  1999年   281篇
  1998年   205篇
  1997年   223篇
  1996年   222篇
  1995年   264篇
  1994年   250篇
  1993年   197篇
  1992年   206篇
  1991年   204篇
  1990年   217篇
  1989年   202篇
  1988年   160篇
  1987年   175篇
  1986年   164篇
  1985年   164篇
  1984年   179篇
  1983年   153篇
  1982年   136篇
  1981年   127篇
  1980年   123篇
  1979年   132篇
  1978年   106篇
  1977年   124篇
  1975年   95篇
  1974年   94篇
  1973年   100篇
  1972年   90篇
排序方式: 共有10000条查询结果,搜索用时 554 毫秒
991.
A rapid, simple, accurate, and sensitive visible spectrophotometric method for the determination of trace amounts of hydrogen peroxide in acidic buffer medium is reported. The proposed method is based on the oxidative coupling of Ampyrone with dibenzazepin hydrochloride by hydrogen peroxide in the buffer medium of pH?4.0 which is catalyzed by ferrous iron. The blue-colored product formed with maximum absorption at 620?nm was found to be stable for 2?h. Beer's law is obeyed for hydrogen peroxide concentration in the range of 0.03-0.42?μg?ml(-1). The optimum reaction conditions and other important optical parameters are reported. The molar absorptive and Sandell's sensitivity are found to be 5.89?×?10(4)?mol(-1)?cm(-1) and 0.57?g/cm(2), respectively. The interference due to diverse ions and complexing agents was studied. The method is successfully applied to the determination of hydrogen peroxide in green plants satisfactorily.  相似文献   
992.
This study evaluated the abilities of various plant species to act as bio-monitors for environmental uranium (U) contamination. Vegetation and soil samples were collected from a U processing facility. The water-way fed from facility storm and processing effluents was the focal sample site as it represented a primary U transport mechanism. Soils and sediments from areas exposed to contamination possessed U concentrations that averaged 630 mg U kg(-1). Aquatic mosses proved to be exceptional accumulators of U with dry weight (dw) concentrations measuring as high as 12,500 mg U kg(-1) (approximately 1% of the dw mass was attributable to U). The macrophytes (Phragmites communis, Scripus fontinalis and Sagittaria latifolia) were also effective accumulators of U. In general, plant roots possessed higher concentrations of U than associated upper portions of plants. For terrestrial plants, the roots of Impatiens capensis had the highest observed levels of U accumulation (1030 mg kg(-1)), followed by the roots of Cyperus esculentus and Solidago speciosa. The concentration ratio (CR) characterized dry weight (dw) vegetative U levels relative to that in associated dw soil. The plant species that accumulated U at levels in excess of that found in the soil were: P. communis root (CR, 17.4), I. capensis root (CR, 3.1) and S. fontinalis whole plant (CR, 1.4). Seven of the highest ten CR values were found in the roots. Correlations with concentrations of other metals with U were performed, which revealed that U concentrations in the plant were strongly correlated with nickel (Ni) concentrations (correlation: 0.992; r-squared: 0.984). Uranium in plant tissue was also strongly correlated with strontium (Sr) (correlation: 0.948; r-squared: 0.899). Strontium is chemically and physically similar to calcium (Ca) and magnesium (Mg), which were also positively-correlated with U. The correlation with U and these plant nutrient minerals, including iron (Fe), suggests that active uptake mechanisms may influence plant U accumulation.  相似文献   
993.
The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from 相似文献   
994.
Short-sediment cores and flooding water were collected at 0, 5, 15, 25 and 50?min of tidal inundation in the two sites colonised by pure stands of Spartina maritima (low marsh) and Sarcocornia fruticosa (high marsh) from the Rosário salt marsh (Tagus estuary, SW Europe). Concentrations of NH (4) (+) , NO (3) (-) +?NO (2) (-) and HPO (4) (2-) , Fe and Mn were measured in tidal flooding water and pore water. Flooding water is enriched in nutrients, particularly ammonium due to local discharge of untreated urban effluents. Nevertheless, NH (4) (+) and NO (3) (-) +?NO (2) (-) concentrations in flooding waters at t?=?5?min (NH (4) (+) =?246?±?7?μM, NO (3) (-) +?NO (2) (-) =?138?±?1?μM for S. fruticosa and NH (4) (+) =?256?±?8?μM, NO (3) (-) +?NO (2) (-) =?138?±?1?μM for S. maritima) rose sharply at both vegetated sites. An increase was also registered for HPO (4) (2-) and total dissolved Fe although the subsequent decrease was smoother. Advective transport induced by the two daily pulses of inundation is several orders of magnitude higher than the diffusive fluxes during submerged periods. In addition, solutes are exported from the sediment with the inundation and imported in submerged periods. The exported amount of inorganic nitrogen during tidal inundation (export of 3,200?μmol?N?m(-2)?day(-1)to the water column), is not counterbalanced by the sink of -290?μmol?N?m(-2)?day(-1) occurred during the submerged period.  相似文献   
995.
The Environmental Protection Agency (EPA) has made available on the worldwide web a systematic stream stressor identification procedure, the “Causal Analysis/Diagnosis Decision Information System” or CADDIS. We report here the results of a survey of regulators and scientists in 11 states who use CADDIS or another stressor identification procedure in their work. The 13 survey questions address guidelines as to what impairment scenarios to approach with stressor identification, what information is needed to perform stressor identification, and what the stakeholder role is in performing stressor identification. At the time of this survey (the summer of 2009), the EPA CADDIS website was less commonly used among the state regulators surveyed than the published EPA stressor identification document on which it is based. The respondents generally find the EPA stressor identification procedure useful and capable of being adapted to their individual needs. Survey respondents all use stressor identification in their Total Maximum Daily Load work, but also in a wide variety of other applications. All the “types of evidence” included in the CADDIS stressor identification procedure are used by the practitioners surveyed with the exception of the results of ecological simulation models. While the CADDIS documentation encourages the involvement of stakeholders in stressor identification, most respondents do not assemble stakeholder teams of local officials and citizens to participate in stressor analyses.  相似文献   
996.
A geophysical survey was conducted over an industrial belt encompassing 80 functional leather factories in Southern India. These factories discharge untreated effluents which pollute shallow groundwater where electrical conductivity (EC) value had a wide range between 545 and 26,600 μS/cm (mean, 3, 901 μS/cm). The ranges of Na+ and Cl? ions were from 46 to 4,850 mg/L (mean, 348 mg/L) and 25 to 10,390 mg/L (mean, 1,079 mg/L), respectively. Geoelectrical layer parameters of 37 vertical electrical soundings were analyzed to demarcate fresh and saline water zones. However, the analysis not did lead to a unique resolution of saline and fresh waters. It was difficult to assign a definitive value to the aquifer resistivity of any area. Thus, geophysical indicators, namely longitudinal unit conductance (S), transverse unit resistance (T), and average longitudinal resistivity (R s), were calculated for identifying fresh and saline waters. Spatial distributions of S, T, and R s reflected widely varying ranges for the saline and fresh water zones. Further, the empirical relation of formation factor (F) was established from pore-water resistivity and aquifer resistivity for fresh and saline aquifers, which may be used to estimate local EC values from the aquifer resistivity, where well water is not available.  相似文献   
997.
According to Directive 2002/49, strategic noise maps and their correspondent action plans were carried out in the Autonomous Community of Navarre, Spain. Six strategic noise maps were produced for 120 km of major roads as well as a strategic noise map for the Agglomeration of the Region of Pamplona (ARP) with a population of 280,199 inhabitants. In the ARP, a total of 36,400 people (13.0 %) are exposed to Ln levels over 55 dBA and 42,300 people (15.1 %) are exposed to Lden levels over 65 dBA. With regard to major roads, a total of 3,900 people are exposed to Ln levels over 55 dBA and 2,400 people are exposed to Lden levels over 65 dBA. When designing action plans, different prioritisation criteria concerning rank-based effectiveness measures (mainly the amount of people benefitting from them) were taken into account.  相似文献   
998.
The incorporation of nanoparticles in industrial and biomedical applications has increased significantly in recent years, yet their hazardous and toxic effects have not been studied extensively. While standard toxicological test methods are generally capable of detecting the toxic effects, the choice of relevant methods for nanomaterials is still discussed. Among the various oxide nanomaterials, silica nanoparticles are widely used in biological applications that include nano-medicine. But studies on adverse effects of silica nanoparticle exposure to fish remain unclear. Therefore, the present study was designed to investigate the oxidative toxic effects of silicon dioxide nanoparticles using fish model. The size of the SiO2 nanoparticles was between 68 and 100 nm which was confirmed by X-ray diffractometer, dynamic light scattering, scanning electron microscope and transmission electron microscope. The zebra fish were exposed to sub-lethal concentrations (5 and 2.5 mg/L) of characterized SiO2 nanoparticles for a period of 7 days. After 7 days, SiO2 nanoparticle-treated fishes were sacrificed, and tissues such as liver, muscle and gill were dissected out for the analysis of antioxidant enzymes and DNA fragmentation. The DNA profiles were analysed in the tissues of zebra fish that treated with SiO2 nanoparticles. Tissues of fish from clean water were used as control, and DNA profiles were analysed. It is found that DNA from control tissues was intact, whereas the tissues treated with SiO2 were all fragmented. SiO2 nanoparticle-mediated antioxidant enzymes activities, such as catalase, superoxide dismutase, glutathione (GSH)-S-transferase, glutathione reductase and GSH, in the tissues of zebra fish were measured. The results revealed that alteration of antioxidant enzymes due to SiO2 nanoparticle can be considered as a biomarker to SiO2-mediated oxidative stress in biological samples.  相似文献   
999.
Bottom sediments from Lake Jinzai in southwest Japan were analyzed to determine their chemical compositions and to assess the potential for ecological harm by comparison with sediment quality guidelines. The pollution status of lake sediments was evaluated by employing contamination factor (CF), pollution load index (PLI), and geoaccumulation index (I(geo)), focusing on a suite of elements in lakebed and core sediments. Elevated concentrations of As, Pb, Zn, Cu, TOC, N, and P were present in several layers of the upper core and other surface sediments. The elevated metal concentrations are likely related to the fine-grained nature of the sediments, reducing bottom conditions produced by abundant organic matter, and possibly minor non-point anthropogenic sources. Moreover, correlations between the concentrations of trace metals and organic carbon, nitrogen, phosphorus, and iron, suggest that these elements play a role in controlling abundances. Calculated CF, PLI, and I(geo) indicate that the sediments are strongly polluted with respect to As, moderately to strongly polluted with Zn, and moderately polluted with Pb and Cu. Metal concentrations exceed the New York State Department of Environmental Conservation (NYSDEC) lowest effect level and the Canadian Council of Ministers of the Environment (CCME) interim sediment quality guidelines that indicate moderate impact on aquatic organisms in the study area.  相似文献   
1000.
Risk assessment of metal-contaminated soil depends on how precisely one can predict the solubility of metals in soils. Responses of plants and soil organisms to metal toxicity are explained by the variation in free metal ion activity in soil pore water. This study was undertaken to predict the free ion activity of Zn, Cu, Ni, Cd, and Pb in metal-contaminated soil as a function of pH, soil organic carbon, and extractable metal content. For this purpose, 21 surface soil samples (0–15 cm) were collected from agricultural lands of various locations receiving sewage sludge and industrial effluents for a long period. One soil sample was also collected from agricultural land which has been under intensive cropping and receiving irrigation through tube well water. Soil samples were varied widely in respect of physicochemical properties including metal content. Total Zn, Cu, Ni, Cd, and Pb in experimental soils were 2,015?±?3,373, 236?±?286, 103?±?192, 29.8?±?6.04, and 141?±?270 mg kg?1, respectively. Free metal ion activity, viz., pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+, as estimated by the Baker soil test was 9.37?±?1.89, 13.1?±?1.96, 12.8?±?1.89, 11.9?±?2.00, and 11.6?±?1.52, respectively. Free metal ion activity was predicted by pH-dependent Freundlich equation (solubility model) as a function of pH, organic carbon, and extractable metal. Results indicate that solubility model as a function of pH, Walkley–Black carbon (WBC), and ethylenediaminetetraacetic acid (EDTA)-extractable metals could explain the variation in pZn2+, pCu2+, pNi2+, pCd2+, and pPb2+ to the extent of 59, 56, 46, 52, and 51 %, respectively. Predictability of the solubility model based on pH, KMnO4-oxidizable carbon, and diethylenetriaminepentaacetic acid-extractable or CaCl2-extractable metal was inferior compared to that based on EDTA-extractable metals and WBC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号