首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20616篇
  免费   234篇
  国内免费   120篇
安全科学   521篇
废物处理   889篇
环保管理   2761篇
综合类   3386篇
基础理论   5816篇
环境理论   10篇
污染及防治   5312篇
评价与监测   1279篇
社会与环境   862篇
灾害及防治   134篇
  2021年   136篇
  2019年   127篇
  2018年   235篇
  2017年   252篇
  2016年   403篇
  2015年   306篇
  2014年   467篇
  2013年   1600篇
  2012年   573篇
  2011年   819篇
  2010年   668篇
  2009年   664篇
  2008年   831篇
  2007年   863篇
  2006年   768篇
  2005年   662篇
  2004年   648篇
  2003年   631篇
  2002年   609篇
  2001年   764篇
  2000年   574篇
  1999年   325篇
  1998年   261篇
  1997年   278篇
  1996年   280篇
  1995年   331篇
  1994年   303篇
  1993年   284篇
  1992年   277篇
  1991年   279篇
  1990年   294篇
  1989年   278篇
  1988年   249篇
  1987年   240篇
  1986年   223篇
  1985年   200篇
  1984年   255篇
  1983年   210篇
  1982年   271篇
  1981年   219篇
  1980年   184篇
  1979年   201篇
  1978年   184篇
  1977年   153篇
  1976年   138篇
  1975年   143篇
  1974年   159篇
  1973年   162篇
  1972年   148篇
  1971年   146篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
671.
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.  相似文献   
672.
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.  相似文献   
673.
Moore MT  Lizotte RE  Knight SS  Smith S  Cooper CM 《Chemosphere》2007,67(11):2184-2191
Three oxbow lakes in northwestern Mississippi, USA, an area of intensive agriculture, were assessed for biological impairment from historic and current-use pesticide contamination using the amphipod, Hyalella azteca. Surface water and sediment samples from three sites in each lake were collected from Deep Hollow, Beasley, and Thighman Lakes from September 2000 to February 2001. Samples were analyzed for 17 historic and current-use pesticides and selected metabolites. Ten-day H. azteca survival and growth (as length and dry weight) were measured to determine the degree of biological impairment. Maximum number of detectable pesticides in surface water from Deep Hollow, Beasley and Thighman Lakes was 10, 11, and 17, respectively. Maximum number of detectable pesticides in lake sediments was 17, 17, and 15, respectively. Bioassay results indicated no observable survival effects on H. azteca exposed to surface water or sediment from any lake examined and no growth impairment in animals exposed to lake sediments. However, growth was significantly impaired in surface water exposures from Deep Hollow Lake (2 sites) and Beasley Lake (1 site). Statistically significant relationships between growth impairment (length) and cyanazine, methyl parathion, λ-cyhalothrin, chlorfenapyr, and pp′DDE surface water concentrations in Deep Hollow Lake as well as trifluralin, atrazine, and methyl parathion in Beasley Lake were observed. Although pesticide frequency and concentrations were typically greater in sediment than surface water, bioassay results indicated decreased availability of these pesticides in sediment due to the presence of clay and organic carbon. Growth impairment observed in surface water exposures was likely due to complex interaction of pesticide mixtures that were present.  相似文献   
674.
Jundiá (Rhamdia quelen, Quoy and Gaimard), a South American teleostean fish, was exposed to sub-lethal concentrations of cypermethrin (30% and 45% of the 48-h LC(50) value of 0.265 ppm) for 2, 4 or 8 days. Serum biochemical and hematological values and behavioral changes were studied. The 30% LC(50), 0.08 ppm, produced significant increases in Mg(2+), P, K(+), creatinine, urea, glucose, cholesterol, aspartate aminotransferase and alkaline phosphatase levels, and reduction in total proteins and triglycerides in serum. The 45% LC(50), 0.12 ppm, produced significant increase in Na(+), Mg(2+), P, K(+), creatinine, urea, glucose, cholesterol, and alkaline phosphatase, and reduction in triglycerides and alanine aminotransferase levels in serum. At this concentration, the fish showed behavior changes such as hyper-excitability, asphyxia, and widening of mouth and operculum. The hematological values remained normal, except for hemoglobin concentrations and the mean corpuscular hemoglobin concentration, which increased with exposure to 0.08 ppm and 0.12 ppm cypermethrin. Results of the present work show that biochemical analysis of serum can be useful to detect incipient cypermethrin intoxication of the shoal.  相似文献   
675.
The present study deals with the biodegradation of catechol through co-metabolism with glucose in aqueous solution as primary substrate in an upflow anaerobic sludge blanket (UASB) reactor. Batch studies indicated that the 1000mgl(-1) glucose concentration was sufficient to cometabolize and degrade catechol in an aqueous solution up to a concentration of 1000mgl(-1). The reactor operated at 35+/-2 degrees C, and at a constant hydraulic retention time of 8h with a gradual stepwise increase in catechol concentration from 100 to 1000mgl(-1) along with glucose as a cosubstrate. The results showed that the catechol was successfully mineralized in an UASB reactor in which microbial granulation was achieved with only glucose as the substrate. The reactor showed > or = 95% COD removal efficiency with 500-1000mgl(-1)catechol concentration in the feed and a glucose concentration of 1500mgl(-1) as a cosubstrate. Similar efficiency was obtained at a constant catechol concentration of 1000mgl(-1) with 500-1000mgl(-1) glucose concentration. Once the reactor got acclimatized with catechol, higher concentrations of catechol can be mineralized with a minimum amount of glucose as the cosubstrate without affecting the performance of the UASB reactor.  相似文献   
676.
We collected and analyzed 955 individual fish (six species) for sexual differences in PCB bioaccumulations from a southeastern, USA reservoir. Using 2-way ANCOVAs, we found significant differences in fillet PCB concentrations between sexes for channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus). Striped bass (Morone saxatilus), black crappie (Pomoxis nigromaculatus) and freshwater drum (Aplodinotus grunniens) did not display differences between sexes in PCB concentrations. We suspect that sexual differences may be due to biological differences in reproduction, relative motility and lipid deposition. For one species (striped bass), sexual differences in PCB concentrations were inconsistent with a study in the Hudson River suggesting that sexual differences in bioaccumulations can change across ecosystems. Two species which did show sexual differences, largemouth bass and channel catfish, are often chosen as representative species (e.g., "piscivore" and "benthivore") in contaminant monitoring in many USA states indicating human consumption and risk management decisions would be improved if an equal number of male and female fish were included in composite PCBs analysis. This could reduce variability in fish PCBs data from which consumption advisories are based.  相似文献   
677.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-alpha,alpha,alpha -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g(-1); short-term experiment) to 200 days (initial concentration = 689 ng g(-1); long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   
678.
Wastewater samples from an anaerobic reactor were extracted with hexane and derivatized with diazomethane (method 1) and with acetic anidride (method 2). Gas chromatography with electron-capture detection (ECD) was employed for separating the parent compound and intermediates trichlorophenols (TCP) and dichlorophenols (DCP) which originated from the penta chlorophenol (PCP) degradation process. The relations between concentrations of PCP, TCP and DCP areas were linear in the range of concentrations of 0.2 to 8 mg/L and 0.025 mg/L to 5 mg/L for methods 1 and 2, respectively. The repeatability of the extraction methods was satisfactory, with variation coefficients lower than 11%. For method 1, at the fortification level of 0.2 mg/L, recovery of PCP, TCP, and DCP was 112%, 74% and 45%, respectively. For method 2, the corresponding recovery values at the fortification level of 0.1 mg/L were 91%, 93% and 103%, respectively. Storage of the frozen samples did not alter their PCP determination properties. The chromatographic methods adapted for chlorophenol determination in wastewater were suitable with relatively simple manipulation techniques. The obtained results were reproducible and allowed identification of intermediates formed during the PCP degradation process.  相似文献   
679.
Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research.  相似文献   
680.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号