首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9626篇
  免费   0篇
废物处理   765篇
环保管理   1206篇
综合类   933篇
基础理论   3103篇
污染及防治   1721篇
评价与监测   1004篇
社会与环境   894篇
  2021年   1篇
  2019年   1篇
  2018年   1473篇
  2017年   1371篇
  2016年   1193篇
  2015年   123篇
  2014年   13篇
  2013年   5篇
  2012年   458篇
  2011年   1337篇
  2010年   688篇
  2009年   596篇
  2008年   876篇
  2007年   1225篇
  2006年   1篇
  2005年   18篇
  2004年   32篇
  2003年   61篇
  2002年   97篇
  2001年   14篇
  2000年   10篇
  1999年   2篇
  1998年   9篇
  1984年   11篇
  1983年   8篇
  1959年   1篇
  1935年   2篇
排序方式: 共有9626条查询结果,搜索用时 15 毫秒
921.
From 1998 to 2001 a total of 200 Ommastrephes bartramii (27 paralarvae) and 170 Sthenoteuthis oualaniensis (14 paralarvae) were sampled from the Central North Pacific. One group of non-paralarval O. bartramii (n = 30) was sampled from farther northwest in 1996. The δ15N of mantle muscle of non-paralarval O. bartramii ( = 12.4‰) was significantly greater than that of non-parlarval S. oualaniensis ( = 8.1‰) (P < 0.001). The δ15N of whole paralarvae of O. bartramii ( = 6.4‰) was not significantly different than parlarvalae of S. oualaniensis ( = 6.1‰) (P = 0.528). There was no significant difference between the mantle muscle δ15N values of male (n = 95, = 13.3‰) and female (n = 18, = 12.9 ‰) O. bartramii greater than 300 mm mantle length (ML) (P = 0.15). There was also no significant difference between the mantle muscle δ15N values of male (n = 15, = 7.2‰) and female (n = 26, = 7.3 ‰) S. oualaniensis in the same size range (P = 0.41). Overall there was a distinct logistic increase in δ15N with mantle length for O. bartramii, whereas S. oualaniensis showed an exponential increase in δ15N with mantle length that was stronger within individual years than with all samples combined. In general, adult O. bartramii are more than a trophic level above S. oualaniensis (4.3‰, 1.3 TLs). Because of the nature of the sampling protocol, this study could not separate spatial and temporal effects on the δ15N signals from each squid species. This study demonstrates the ability of stable isotope analyses to differentiate trophic levels between squid species as well as track trophic changes across size ranges from paralarvae to adults. Additional research is needed to validate these trophic changes across size within individuals.  相似文献   
922.
Eelgrass, Zostera marina, produces two types of shoots: morphologically simple vegetative shoots and highly branched flowering (reproductive) shoots, the latter found only in summer months. We examined whether the abundance and diversity of mobile epifaunal assemblage are affected by the presence of flowering shoots in an eelgrass meadow of Otsuchi Bay, northeastern Japan. Comparisons of epifauna in natural vegetation revealed that density and species richness did not differ significantly between sites consisting of both flowering and vegetative shoots, and those only of vegetative shoots. A transplant experiment, conducted to examine the colonization rates of epifauna to defaunated eelgrass planted with different combination of vegetative and flowering shoots, showed no obvious variation in abundance and species richness. At species level, the density of some species such as a tanaid Zeuxo sp. and a polychaete Platynereis sp. was higher at sites and/or treatments with flowering shoots, whereas that of some gastropods, such as Lirularia iridescens and Siphonacmea oblongata was higher at sites without flowering shoots. The species-specific response led to dissimilarity of epifaunal assemblage between sites and among treatments with different densities of vegetative and flowering shoots. Similar patterns observed for natural vegetation and the transplant experiment suggest that the variation in assemblage structure is caused by habitat selection of each species, for example, the utilization of flowering shoots as feeding ground and nursery by Zeuxo sp.  相似文献   
923.
Many symbioses involve multiple partners in complex, multi-level associations, yet little is known concerning patterns of nutrient transfer in multi-level marine mutualisms. We used the anemonefish symbiosis as a model system to create a balance sheet for nitrogen production and transfer within a three-way symbiotic system. We quantified diel patterns in excretion of ammonia by anemonefish and subsequent absorption by host sea anemones and zooxanthellae under laboratory conditions. Rates of ammonia excretion by the anemonefish Amphiprion bicinctus varied from a high of 1.84 μmole g−1 h−1 at 2 h after feeding, to a basal rate of 0.50 μmole g−1 h−1 at 24–36 h since the last meal. Conversely, host sea anemones Entacmaea quadricolor absorbed ammonia at a rate of 0.10 μmole g−1 h−1 during the daytime in ammonia-enriched seawater, but during the night reduced their absorption rate to near zero, indicating that ammonia uptake was driven by zooxanthella photosynthesis. When incubated together, net ammonia excretion was virturally zero, indicating that host anemones absorbed most of the ammonia produced by resident fish. Adult anemonefish weighed about 11 g under laboratory conditions, but on the coral reef may reach up to 64 g, resulting in a maximal potential ammonia load of >200 μmole h−1 produced by two adult fish during daylight hours. In contrast, host sea anemones weighed about 47 g in the laboratory, but under field conditions, large individuals may reach 680 g, so their maximal ammonia clearance rates may reach about 70 μmole h−1 during the daytime. As such, the ammonia load produced by adult anemonefish far exceeds the clearance rate of host anemones and zooxanthellae. Ammonia transfer likely occurs mainly during the daytime, when anemonefish consume zooplankton and excrete rapidly, and in turn the zooxanthellae are photosynthetically active and drive rapid ammonia uptake. We conclude that zooplanktivorous fishes that form mutualisms with coral reef cnidarians may serve as an important link between open water and benthic ecosystems, through the transfer of large quantities of nutrients to zooxanthellate hosts, thus enhancing coral reef productivity.  相似文献   
924.
Physical and biological processes interact to produce pattern in nature. Pattern is scale dependent as processes generating pattern are heterogeneous in time and space. We tested some causes of variation in abundance and distribution of three marginal populations of sublittoral blue mussels, Mytilus edulis, in the non-tidal northeastern Baltic Sea. We studied the role of substrate inclination, perennial algae and siltation along local wave exposure gradients on mussel distribution over a regional salinity gradient. We found marked differences on regional scales (p < 0.001) with lower densities and biomasses of mussels with declining salinity. Along local gradients, mussel densities increased with increasing exposure (p < 0.001) and declining slope and sedimentation (p < 0.01). Site specifically, densities of blue mussels and the perennial red algae, Furcellaria lumbricalis, were positively related, results supported by a colonisation experiment. Also, young post-recruits showed significant relations to adult biomass, wave exposure, algal biomass, bottom slope and sediment cover. Findings showed that the relative importance of the determinants affecting blue mussels at the edge of their range vary with scale and are affected by the density and size structure of mussel populations. The study provides an indication of the types of factors that may be invoked as causes of spatial variation in marginal blue mussel populations and reinforces the need to consider multiple aspects when distributional patterns are assessed.  相似文献   
925.
Animal courtship rituals are important for species recognition, and a variety of cues might be utilized to recognize conspecific mates. In this paper, we investigate different species-recognition mechanisms between two sympatric butterfly sister species: the wood white (Leptidea sinapis) and Real’s wood white (Leptidea reali). We show that males of both species frequently court heterospecific females both under laboratory and field conditions. The long-lasting elaborate courtships impose energetic costs, since the second courtship of males that were introduced to two subsequent conspecific females lasted on average only one fourth as long as the first courtship. In this paper, we demonstrate that premating reproductive isolation is dependent on female unwillingness to accept heterospecific mates. We studied female and male courtship behavior, chemical signaling, and the morphology of the sexually dimorphic antennae, one of the few male traits visible for females during courtship. We found no differences in ultraviolet (UV) reflectance and only small differences in longer wavelengths and brightness, significant between-species differences, but strongly overlapping distributions of male L. sinapis and L. reali antennal morphology and chemical signals and minor differences in courtship behavior. The lack of clear-cut between-species differences further explains the lack of male species recognition, and the overall similarity might have caused the long-lasting elaborate courtships, if females need prolonged male courtships to distinguish between con- and heterospecific suitors.  相似文献   
926.
One of the two phloretin-sensitive, facilitated urea transporters identified from the kidneys of the myliobatiform, euryhaline elasmobranch, Dasyatis sabina, a 379 amino acid protein ([D. sabina]strUT-2), was very similar to the 380 amino acid isoform (shUT) present in the kidney of the squaliform, dogfish shark, Squalus acanthias (a species that can be considered marginally euryhaline since it utilizes upper estuarine, as well as ocean habitats). To test the proposal that this isoform is a conserved urea transporter (UT) expressed in the kidneys of diverse elasmobranchs, UTs were cloned from the kidneys of a rajiform elasmobranch, the stenohaline skate, Leucoraja ocellata and another dasyatid stingray, the marginally euryhaline, Dasyatis say. Utilizing 5′/3′ RACE, a 2,060 nt cDNA that encoded a phloretin-sensitive, 378 amino acid skate urea transporter ([L. ocellata]skUT-2) and a 1,683 nt cDNA that encoded a stingray 379 amino acid UT ([D. say]strUT-2) were obtained. These deduced UTs have a very high sequence identity with the known elasmobranch Uts. [L. ocellata]skUT-2 was 86% identical to [D. sabina]strUT-2 and 84% identical to [S. acanthias]shUT. [D. say]strUT-2 was 97% identical to the [D. sabina]strUT-2. These findings support the hypothesis that a conserved UT isoform is present in the kidneys of marine elasmobranchs, and is an important pathway for facilitated urea transport in the kidneys of marine elasmobranchs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. H.A. Gefroh and E.E. Cwengros contributed equally to this study.  相似文献   
927.
We conducted four experiments to determine whether yellow-bellied marmots, Marmota flaviventris, discriminate among predator vocalizations, and if so, whether the recognition mechanism is learned or experience-independent. First, we broadcast to marmots the social sounds of coyotes, Canis latrans, wolves, Canis lupus, and golden eagles, Aquila chrysaetos, as well as conspecific alarm calls. Coyotes and eagles are extant predators at our study site, while wolves have been absent since the mid-1930s. In three follow-up experiments, we reversed the eagle call and presented marmots with forward and reverse calls to control for response to general properties of call structure rather than those specifically associated with eagles, we tested for novelty by comparing responses to familiar and unfamiliar birds, and we tested for the duration of predator sounds by comparing a wolf howl (that was much longer than the coyote in the first experiment) with a long coyote howl of equal duration to the original wolf. Marmots suppressed foraging and increased looking most after presentation of the conspecific alarm call and least after that of the coyote in the first experiment, with moderate responses to wolf and eagle calls. Marmots responded more to the forward eagle call than the reverse call, a finding consistent with a recognition template. Marmots did not differentiate vocalizations from the novel and familiar birds, suggesting that novelty itself did not explain our results. Furthermore, marmots did not differentiate between a wolf howl and a coyote howl of equal duration, suggesting that the duration of the vocalizations played a role in the marmots’ response. Our results show that marmots may respond to predators based solely on acoustic stimuli. The response to currently novel wolf calls suggests that they have an experience-independent ability to identify certain predators acoustically. Marmots’ response to predator vocalizations is not unexpected because 25 of 30 species in which acoustic predator discrimination has been studied have a demonstrated ability to respond selectively to cues from their predators.  相似文献   
928.
Certain groups of organisms are capable of improving their collective performance with experience. In a recent study, we demonstrated that, over successive emigrations, colonies of the ant Temnothorax albipennis are able to improve their collective performance by reducing the time taken to complete an emigration (Langridge et al., Behav Ecol Sociobiol 56:523–529, 2004). In this paper, by recording the performance of individually marked workers during repeated emigrations, we were able to analyse some of the ways in which time gains are achieved. We found that: (1) those transporters that also transported in the preceding emigration began to transport earlier in the current emigration and, in the majority of emigrations, transported more items than those transporters that had not transported in the preceding emigration; (2) the time that elapsed before the first item was transported into the new nest reduced over successive emigrations, and this first item was, in the majority of emigrations, carried by a transporter that had also transported in the preceding emigration; (3) the number of adults that were transported reduced over successive emigrations. Our results strongly suggest that the behaviour of transporters that also transported in a preceding emigration may be modified as a result of their experience and that, consequently, their efforts in the next emigration make a major contribution to the improved performance of the colony as a whole.  相似文献   
929.
Leptocephali of the widely distributed tropical marine eels of the genus Kaupichthys (family Chlopsidae) were collected around Sulawesi Island during a sampling survey in the Indonesian Seas in late September and early October 2002, and the otolith microstructure of 24 of the 59 specimens captured was examined to learn about the larval growth rates and spawning times of these small sized eels. Leptocephali ranging in size from 25 to 60 mm were collected in Makassar Strait and the Celebes Sea, but they were most abundant in the semi-enclosed Tomini Bay of northeast Sulawesi Island. The Kaupichthys leptocephali examined had 39–161 otolith growth increments. Their back-calculated hatching dates indicated that five age groups were present and each group appeared to have been spawned around the full moon of previous months. Average growth rate estimates of the first two age groups were 0.65 and 0.54 mm/day for the 27.4–30.4 and 37.6–45.6 mm age classes. The growth rates of the oldest three age groups (52.0–60.8 mm) appeared to have slowed down after they reached their approximate maximum size. An increase in increment widths at the outer margin of the otoliths of those larger than 53 mm suggested that the process of metamorphosis had begun even though there were few external morphological changes indicating metamorphosis. It is hypothesized that chlopsid leptocephali have an unusually short gut that may not need to move forward during early metamorphosis. The presence of four age classes in Tomini Bay suggests that the Togian Islands region may be productive habitats for Kaupichthys juveniles and adults.  相似文献   
930.
Summary. Although terrestrial turtles have served as a model for studies of olfactory neurophysiology, little is known about how they use chemical information in an ecological sense. We tested whether box turtles (Terrapene carolina) use chemical information to distinguish between predatory and nonpredatory mammals. Box turtles in our study exhibited more escape behavior when exposed to urine from a predator (coyote, Canis latrans) than when exposed to urine from a nonpredator (white-tailed deer, Odocoileus virginianus) or a blank control. Escape behavior is consistent with an antipredator response. In addition, the turtles decreased their handling time for food when in the presence of urine from either species of mammal in comparison to the blank, indicating that chemical cues from mammals in general may result in increased vigilance by terrestrial turtles. Examination of a variety of response variables may be important for adequate assessment of the ecological role of chemosensory behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号