首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3612篇
  免费   60篇
  国内免费   35篇
安全科学   204篇
废物处理   117篇
环保管理   965篇
综合类   331篇
基础理论   879篇
环境理论   7篇
污染及防治   810篇
评价与监测   227篇
社会与环境   136篇
灾害及防治   31篇
  2023年   14篇
  2022年   24篇
  2021年   29篇
  2020年   26篇
  2019年   37篇
  2018年   44篇
  2017年   66篇
  2016年   84篇
  2015年   74篇
  2014年   78篇
  2013年   451篇
  2012年   132篇
  2011年   179篇
  2010年   121篇
  2009年   136篇
  2008年   158篇
  2007年   198篇
  2006年   138篇
  2005年   120篇
  2004年   126篇
  2003年   128篇
  2002年   111篇
  2001年   64篇
  2000年   79篇
  1999年   50篇
  1998年   57篇
  1997年   46篇
  1996年   62篇
  1995年   57篇
  1994年   65篇
  1993年   52篇
  1992年   47篇
  1991年   39篇
  1990年   46篇
  1989年   31篇
  1988年   43篇
  1987年   33篇
  1986年   38篇
  1985年   34篇
  1984年   30篇
  1983年   37篇
  1982年   49篇
  1981年   48篇
  1980年   28篇
  1979年   28篇
  1978年   25篇
  1977年   29篇
  1976年   13篇
  1974年   10篇
  1972年   11篇
排序方式: 共有3707条查询结果,搜索用时 140 毫秒
581.
This paper presents a modeling analysis of airborne mercury (Hg) deposited on the Ochlockonee River watershed located in Georgia. Atmospheric deposition monitoring and source attribution data were used along with simulation models to calculate Hg buildup in the subwatershed soils, its subsequent runoff loading and delivery through the tributaries, and its ultimate fate in the mainstem river. The terrestrial model calculated annual watershed yields for total Hg ranging from 0.7 to 1.1 microg/m2. Results suggest that approximately two-thirds of the atmospherically deposited Hg to the watershed is returned to the atmosphere, 10% is delivered to the river, and the rest is retained in the watershed. A check of the aquatic model results against survey data showed a reasonable agreement. Comparing observed and simulated total and methylmercury concentrations gave root mean square error values of 0.26 and 0.10 ng/L, respectively, in the water column, and 5.9 and 1 ng/g, respectively, in the upper sediment layer. Sensitivity analysis results imply that mercury in the Ochlockonee River is dominated by watershed runoff inputs and not by direct atmospheric deposition, and that methylmercury concentrations in the river are determined mainly by net methylation rates in the watershed, presumably in wetted soils and in the wetlands feeding the river.  相似文献   
582.
583.
584.
585.
586.
587.
The fungicide vinclozolin and insecticide λ-cyhalothrin are widely used to control canola (Brassica spp.) diseases and insect pests, respectively, in Canada. We investigated non-target effects of these pesticides, applied at recommended rates, on soil microbial biomass, functional bacterial diversity and functional community structure of soil bacteria (by evaluating patterns of C substrate utilization) in canola rhizosphere and bulk soil at three locations in Alberta from 2002 to 2004. Experimental treatments were (a) untreated control, (b) vinclozolin fungicide foliar application, (c) λ-cyhalothrin insecticide foliar application, and (d) vinclozolin and λ-cyhalothrin applications. No significant pesticide effects on soil microbial biomass or functional bacterial diversity were observed, but the functional structures of soil bacteria were altered. In 1 of 12 cases, the control treatment had a different soil bacterial community structure from the 3 pesticide treatments. The fungicide treatment had different bacterial community structures from the control or insecticide treatments in 3 of 12 cases, the insecticide treatment had different community structures from the control or fungicide treatments in 4 of 12 cases, and the combined fungicide and insecticide treatment had different community structures from the other treatments in 3 of 12 cases. Therefore, evaluating soil bacterial functional structures revealed pesticide effects that were not detected when bacterial diversity or microbial biomass were measured in canola rhizosphere or bulk soil.  相似文献   
588.
This study seeks to improve understanding of temperature patterns in reservoir outflows. We examined water temperatures in an irrigation storage reservoir, Island Park Reservoir, and its outflow, Henry’s Fork of the Snake River in eastern Idaho. Our objectives were to (1) quantify the extent to which daily temperature ranges in the reservoir outflow deviated from other reaches of the Henry’s Fork, and (2) test whether the reservoir’s net volume change during the summer — expressed as the volume of water remaining in the reservoir on September 1 — predicted mean summer temperature in the outflow. Two years of temperature data showed dampened diel temperature cycles in the reservoir outflow. Model selection with 17 years of climatic, hydrologic, and reservoir management variables found mean summer temperature in the outflow was best predicted by September 1 reservoir volume and average summer air temperature. Two years of weekly reservoir thermal profiles indicated large changes in reservoir volume eliminated cool hypolimnetic water and encouraged mixing, allowing warm epilimnetic water to be discharged into the outflow. Increases in future drought frequency and severity and increases in summer air temperatures could increase the frequency of occurrence of high mean summertime water temperatures in the outflow. Our study provides important information for local managers by quantifying influences on outflow temperatures and the downstream river ecosystem.  相似文献   
589.
590.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号