首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19698篇
  免费   223篇
  国内免费   171篇
安全科学   645篇
废物处理   735篇
环保管理   3174篇
综合类   2885篇
基础理论   5267篇
环境理论   11篇
污染及防治   5063篇
评价与监测   1205篇
社会与环境   973篇
灾害及防治   134篇
  2022年   136篇
  2021年   155篇
  2020年   131篇
  2019年   181篇
  2018年   264篇
  2017年   286篇
  2016年   428篇
  2015年   308篇
  2014年   431篇
  2013年   1683篇
  2012年   577篇
  2011年   803篇
  2010年   646篇
  2009年   651篇
  2008年   841篇
  2007年   870篇
  2006年   791篇
  2005年   631篇
  2004年   700篇
  2003年   644篇
  2002年   588篇
  2001年   767篇
  2000年   547篇
  1999年   330篇
  1998年   298篇
  1997年   257篇
  1996年   279篇
  1995年   295篇
  1994年   331篇
  1993年   267篇
  1992年   290篇
  1991年   258篇
  1990年   283篇
  1989年   264篇
  1988年   230篇
  1987年   197篇
  1986年   187篇
  1985年   193篇
  1984年   221篇
  1983年   216篇
  1982年   230篇
  1981年   215篇
  1980年   160篇
  1979年   180篇
  1978年   153篇
  1977年   143篇
  1975年   128篇
  1974年   126篇
  1973年   116篇
  1972年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Wang X  Cook R  Tao S  Xing B 《Chemosphere》2007,66(8):1476-1484
Sorption behavior of hydrophobic organic contaminants (HOCs) (i.e., pyrene, phenanthrene and naphthalene) by native and chemically modified biopolymers (lignin, chitin and cellulose) was examined. Lignins (native and treated) showed nonlinear sorption for all compounds studied, emphasizing their glassy character. Chitins and celluloses had linear isotherms for phenanthrene and naphthalene, illustrating the dominance of partitioning, while pyrene yielded nonlinear isotherms. Sorption capacity (K(oc)) of HOCs was negatively correlated with the polarity [(O+N)/C] of the biopolymers. Aromatic and alkyl+aromatic C percentages, rather than alkyl C content, demonstrated a better correlation with K(oc) values, indicating the importance of aromatic structures for HOC affinity. Hydrophobicity (K(ow))-normalized K(oc) values decreased sharply with increasing percentage of O-alkyl C versus total aliphatic C (O-alkyl C/total aliphatic C) or with polar C/(alkyl+aromatic C) ratio of the biopolymers until their values reached 80% and 4, respectively, illustrating the effect of surrounding polar groups on reducing affinity for HOCs. Overall, the results of this study highlight the role of spatial arrangement of domains within biopolymers in sorption of HOCs, and point to sorbent properties, such as functionality, polarity and structure, jointly regulating the sorption of HOCs in biopolymers.  相似文献   
942.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   
943.
Highly leaded jewelry, often imported from China, remains widely available in the United States. Leaded electronic waste is exported from the United States to several Asian countries where solder is recovered and circuit boards are stripped of parts in small workshops. To assess whether electronic waste is being recycled into the jewelry, lead, tin and copper content of highly leaded jewelry samples were determined by atomic absorption spectrometry. Sixteen jewelry items previously determined to contain 20-80% lead by weight were analyzed. Samples were digested in nitric acid for analysis of lead and copper, and in aqua regia for analysis of tin. Six samples contained significant amounts of tin, from 20.8% to 29.9% by weight. In addition, copper was a significant minor component of five of these samples (up to 4% by weight). Copper (present at 10-40% by weight in circuit boards) was shown to rapidly move into heated lead-tin solder. The combined lead-tin-copper content of these six items ranges from 93.5% to 100%, suggestive of a solder-based source material. These results are consistent with the hypothesis that recycled circuit board solders are being used to produce some of the heavily leaded imported jewelry sold in the United States. Should this hypothesis be substantiated, it suggests that environmental policies to protect children's health must address both proper recycling of source materials as well as restrictions of the lead content in consumer goods.  相似文献   
944.
Maintenance of Department of Defense (DoD) weapon systems, conducting battlefield training exercises as well as meeting military construction and/or demolition schedules, invariably generate fugitive air emissions, many of which are visible. Although there is no codified federal method for quantifying fugitive emissions opacity, many state and local air regulatory agencies have instituted enforceable fugitive emission opacity standards at DoD facilities. The current study focused on comparing the performance of the digital opacity compliance system (DOCS) with U.S. Environment Protection Agency Method 9 (Method 9) certified human observers in quantifying the visible opacity associated with fugitive emissions produced using a commercial fog generator. By systematically repositioning both DOCS cameras and Method 9-certified observers during field testing, differences in method performance as a function of observational locations were documented. At both the 30- and 300-ft off-set distances, opacity levels reported by the DOCS technology and Method 9-certified smoke readers were found to be statistically different at the 99% confidence level. Alternatively, at the 90- and 150-ft off-set distances, results suggested that there was an insignificant difference at the 99% confidence level between the two methods. Comparing the magnitude of the each method's standard deviation suggested that, at the 30-ft off-set distance, the DOCS technology was consistently more precise than Method 9-certified readers regardless of the observer's downwind distance. However, at the 90, 150, and 300-ft off-set distances, method precision seemed to vary as a function of both off-set and downwind distance. The primary factor affecting the consistency in opacity measurements appeared to be the impact of ground-level air turbulence on fog plume dispersion and transport. Field observations demonstrated that localized wind shear played a critical and decisive role in how and to what extent fugitive emissions opacity could be determined, regardless of the method selected.  相似文献   
945.
Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965-2003; odometer readings 1264-207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-microm aerodynamic diameter) and fine PM1.8 (< or =1.8-microm aerodynamic diameter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emissions of 51 microg/km and 371 microg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1- and 0.18-microm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 microm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in ultrafine particles.  相似文献   
946.
In Bilbao (Spain), an air quality network measures sulphur dioxide levels at 4 locations. The objective of this paper is to develop a practical methodology to identify redundant sensors and evaluate a network's capability to correctly follow and represent SO2 fields in Bilbao, in the frame of a continuous network optimization process.The methodology is developed and tested at this particular location, but it is general enough to be useable at other places as well, since it is not tied neither to the particular geographical characteristics of the place nor to the phenomenology of the air quality over the area.To assess the spatial variability of SO2 measured at 4 locations in the area, three different techniques have been used: Self-Organizing Maps (SOMs), cluster analysis (CA) and Principal Component Analysis (PCA). The results show that the three techniques yield the same results, but the information obtained via PCA can be helpful not only for that purpose but also to throw light on the major mechanisms involved. This might be used in future network optimization stages. The main advantage of cluster analysis and SOMs is that they provide readily interpretable results. All the calculations have been carried out using the freely available software R.  相似文献   
947.
The infrared spectrum of HCF2OCF2OCF2CF2OCF2H (CAS# 188690-77-9) has been re-measured. The integrated absorption intensity over the range 1000–1500 cm?1 measured in the present work is (6.65 ± 0.33) × 10?17 cm2 molecule?1 cm?1 in 700 Torr of air at 296 K. The radiative efficiency of HCF2OCF2OCF2CF2OCF2H is calculated to be 1.02 W m?2 ppb?1. The value reported in the 2007 Intergovernmental Panel on Climate Change (IPCC) report is approximately 35% larger reflecting what we believe to be an erroneously high value for the absorption strength of HCF2OCF2OCF2CF2OCF2H adopted by the IPCC.  相似文献   
948.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   
949.
The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community.The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions.The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.  相似文献   
950.
Emissions from diesel-powered construction equipment are an important source of nitrogen oxides (NOx) and particulate matter (PM). A new emission inventory for construction equipment emissions is developed based on surveys of diesel fuel use; the revised inventory is compared to current emission inventories. California's OFFROAD model estimates are 4.5 and 3.1 times greater, for NOx and PM respectively, than the fuel-based estimates developed here. The most relevant uncertainties are the overall amount of construction activity/diesel fuel use, exhaust emission factors for PM and NOx, and the spatial allocation of emissions to county level and finer spatial scales. Construction permit data were used in this study to estimate spatial distributions of emissions; the resulting distribution is well correlated with population growth. An air quality model was used to assess the impacts of revised emission estimates. Increases of up to 15 ppb in predicted peak ozone concentrations were found in southern California. Elemental carbon and fine particle mass concentrations were in better agreement with observations using revised emission estimates, whereas negative bias in predictions of ambient NOx concentrations increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号