首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   47篇
  国内免费   12篇
安全科学   44篇
废物处理   49篇
环保管理   319篇
综合类   93篇
基础理论   294篇
环境理论   1篇
污染及防治   322篇
评价与监测   68篇
社会与环境   33篇
灾害及防治   11篇
  2023年   8篇
  2022年   9篇
  2021年   11篇
  2020年   17篇
  2019年   8篇
  2018年   25篇
  2017年   33篇
  2016年   30篇
  2015年   30篇
  2014年   33篇
  2013年   113篇
  2012年   52篇
  2011年   58篇
  2010年   49篇
  2009年   53篇
  2008年   62篇
  2007年   66篇
  2006年   65篇
  2005年   38篇
  2004年   36篇
  2003年   43篇
  2002年   42篇
  2001年   25篇
  2000年   35篇
  1999年   20篇
  1998年   19篇
  1997年   17篇
  1996年   27篇
  1995年   22篇
  1994年   16篇
  1993年   13篇
  1992年   15篇
  1991年   7篇
  1990年   8篇
  1989年   15篇
  1988年   10篇
  1987年   21篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   13篇
  1981年   4篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
排序方式: 共有1234条查询结果,搜索用时 31 毫秒
201.
Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear.  相似文献   
202.
A component density feedback represents the effect of change in population size on single demographic rates, whereas an ensemble density feedback captures that effect on the overall growth rate of a population. Given that a population's growth rate is a synthesis of the interplay of all demographic rates operating in a population, we test the hypothesis that the strength of ensemble density feedback must augment with increasing strength of component density feedback, using long-term censuses of population size, fertility, and survival rates of 109 bird and mammal populations (97 species). We found that compensatory and depensatory component feedbacks were common (each detected in approximately 50% of the demographic rates). However, component feedback strength only explained <10% of the variation in ensemble feedback strength. To explain why, we illustrate the different sources of decoupling between component and ensemble feedbacks. We argue that the management of anthropogenic impacts on populations using component feedbacks alone is ill-advised, just as managing on the basis of ensemble feedbacks without a mechanistic understanding of the contributions made by its components and environmental variability can lead to suboptimal decisions.  相似文献   
203.
Phenological tracking enables positive species responses to climate change   总被引:1,自引:0,他引:1  
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.  相似文献   
204.
Thirty-four juvenile loggerhead sea turtles captured by trawling from the Charleston, South Carolina (USA), shipping channel (32°42′N; −79°47′W) between May 2004 and August 2007 were tagged with satellite transmitters to assess the extent to which they remained near the capture location given their collection along a seasonal migratory corridor. Seventy-five percent of juveniles were classified as seasonal residents. Migrants predominantly swam north in the spring and nomads wandered south in the summer, but predictive indicators for non-resident status were not identified. All but one juvenile generally remained south of 34°N, within 40 km of shore, and in waters <30 m deep throughout the year. Nine of 14 loggerhead sea turtles monitored during the winter remained exclusively over the continental shelf, three briefly occurred in oceanic habitats, and two foraged extensively in oceanic habitats. Residents distributed >15 km from shore between spring and autumn were three times as likely to occur in oceanic habitats in winter. Modest seasonal movements contrasted with adults tagged at similar latitudes and with juveniles tagged further north and suggest distinct foraging groups within a regional foraging ground.  相似文献   
205.
Satellite transmitters were attached to 25 reproductively active and four inactive adult male loggerhead sea turtles (86.6–107.0 cm SCLmin) captured from the Port Canaveral, FL, USA shipping channel to assess horizontal and vertical distributions. During the breeding period, male loggerheads aggregated (44% of 755 turtle days) in a 117.6 km2 core area that encompassed the shipping channel. Median dive duration during the breeding period was 27 min (IQR = 15–42 min) and males spent 4% (IQR = 3–5%) of the time at the surface, with significantly shorter dives associated with reproductively active males. Migrant and resident males dispersed concurrently, with residents shifting > 30 km east across the continental shelf over a more protracted departure schedule than migrants. Dive duration and time spent at the surface increased through the fall. Cluster analysis revealed the strongest association for dive duration with sea state during and after the breeding period, with significantly longer dives during more turbulent conditions. In contrast, univariate associations with surface interval duration were not elucidated.  相似文献   
206.
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2–4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.  相似文献   
207.
Guo H  Pennings SC 《Ecology》2012,93(1):90-100
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.  相似文献   
208.
The United Nations' Monitoring and Reporting Mechanism is charged with documenting six grave violations against children in a time of conflict, including attacks on schools. Many of these incidents, however, remain unreported across the globe. This study explores whether or not a local knowledge base of education and child protection actors in North and South Kivu Provinces, Democratic Republic of the Congo, and in Mogadishu, Somalia, could contribute to a more complete record of attacks on education in those areas. Hundreds of semi‐structured interviews were conducted with key informants across the three settings, and in total 432 attacks on education were documented. Purposive samples of these reports were verified and a large majority was confirmed. Local non‐governmental organisations and education institutions were most knowledgeable about these incidents, but most never reported them to a monitoring authority. The study concludes that attack surveillance and response were largely insufficient, and recommends investing in mechanisms that utilise local knowledge to address these shortcomings.  相似文献   
209.
Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection.  相似文献   
210.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号