首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   47篇
  国内免费   12篇
安全科学   44篇
废物处理   49篇
环保管理   319篇
综合类   93篇
基础理论   294篇
环境理论   1篇
污染及防治   322篇
评价与监测   68篇
社会与环境   33篇
灾害及防治   11篇
  2023年   8篇
  2022年   9篇
  2021年   11篇
  2020年   17篇
  2019年   8篇
  2018年   25篇
  2017年   33篇
  2016年   30篇
  2015年   30篇
  2014年   33篇
  2013年   113篇
  2012年   52篇
  2011年   58篇
  2010年   49篇
  2009年   53篇
  2008年   62篇
  2007年   66篇
  2006年   65篇
  2005年   38篇
  2004年   36篇
  2003年   43篇
  2002年   42篇
  2001年   25篇
  2000年   35篇
  1999年   20篇
  1998年   19篇
  1997年   17篇
  1996年   27篇
  1995年   22篇
  1994年   16篇
  1993年   13篇
  1992年   15篇
  1991年   7篇
  1990年   8篇
  1989年   15篇
  1988年   10篇
  1987年   21篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   13篇
  1981年   4篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
排序方式: 共有1234条查询结果,搜索用时 31 毫秒
621.
Soil ingestion is an important exposure route by which immobile soil contaminants enter the human body. We assessed polycyclic aromatic hydrocarbon (PAH) release from a contaminated soil, containing 49 mg PAH kg(-1), using a SHIME (Simulator of the Human Intestinal Microbial Ecosystem) reactor comprising the stomach, duodenal, and colon compartments. Polycyclic aromatic hydrocarbon release was defined as that fraction remaining in the digest supernatant after centrifugation for 5 min at 1500 x g. The PAH release in the stomach digest was only 0.44% of the total PAH present in soil, resulting in PAH concentrations of 23 micrograms PAH L(-1) chyme. The lower PAH releases in duodenum (0.13%) and colon (0.30%) digests, compared with the stomach digest, were thought to be attributed to combined complexation and precipitation with bile salts, dissolved organic matter, or colon microbiota. We studied these complexation processes in an intestinal suspension more in depth by preparing mixtures of 9-anthracenepropionic acid, a Bacillus subtilis culture, and cholin as model compounds for PAHs, organic matter, and bile salts, respectively. Bile salts or organic matter in the aqueous phase initially enhance PAH desorption from soil. However, desorbed PAHs may form large aggregates with bile and organic matter, lowering the freely dissolved PAH fraction in the supernatant. Using the model compounds, mathematical equations were developed and validated to predict PAH complexation processes in the gastrointestinal tract. Contaminant release and subsequent complexation in the gut is an important prerequisite to intestinal absorption and thus bioavailability of that contaminant. The data from this research may help in understanding the processes to which PAHs are subjected in the gastrointestinal tract, before intestinal absorption.  相似文献   
622.
Anthropogenic changes to the global N cycle are important in part because added N alters the composition, productivity, and other properties of many natural ecosystems substantially. Why does added N have such a large impact? Why is N in short supply in so many natural ecosystems? Processes that slow the cycling of N relative to other elements and processes that control ecosystem-level inputs and outputs of N could cause N supply to limit the dynamics of ecosystems. We discuss stoichiometric differences between terrestrial plants and other organisms, the abundance of protein-precipitating plant defenses, and the nature of the C-N bond in soil organic matter as factors that can slow N cycling. For inputs, the energetic costs of N fixation and their consequences, the supply of nutrients other than N, and preferential grazing on N-fixers all could constrain the abundance and/or activity of biological N-fixers. Together these processes drive and sustain N limitation in many natural terrestrial ecosystems.  相似文献   
623.
The determination of sub-ppm concentrations of aqueous perfluoroalkylsulfonate (PFSt) anions, including perfluorooctylsulfonate (PFOS), has been accomplished with a relatively simple mass spectrometric procedure that does not require extraction of the analytes into an organic solvent or a chromatographic separation prior to injection into the negative-ion electrospray ionization mass spectrometer. Sample pretreatment was minimized and consisted of dilution of the aqueous samples of groundwater, surface water, tap water, and distilled water with acetonitrile, addition of dodecylsulfate (DDS) as an internal standard, and, in some cases, addition of known amounts of perfluorobutylsulfonate (PFBS) or PFOS for standard-addition experiments. The linear-response range for PFOS is 25.0 microg L(-1) to 2.5 mg L(-1). The lower limit of this range is three orders of magnitude lower than an equally straightforward chromatographic method. The relative errors for standard aqueous solutions containing only 25.0 microg L(-1) and 2.5 mg L(-1) PFOS are +/- 14% and +/- 7%, respectively, with 133 microg L(-1) DDS as the internal standard. The detection limit and quantification limit for PFOS in these standards are 5.0 microg L(-1) and 25.0 microg L(-1), respectively. Six different PFS anions, containing three to eight carbon atoms, were identified and quantified in an aqueous film-forming foam (AFFF) formulation using the method of standard additions. Two alkylsulfate anions and two perfluoroalkylcarboxylate anions were also identified in the AFFF formulation.  相似文献   
624.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   
625.
ABSTRACT: The need to monitor and forecast water resources accurately, particularly in the western United States, is becoming increasingly critical as the demand for water continues to escalate. Consequently, the National Weather Service (NWS) has developed a geostatistical model that is used to obtain areal estimates of snow water equivalent (the thtal water content in all phases of the snowpack), a major source of water in the West. The areal snow water equivalent estimates are used to update the hydrologic simulation models maintained by the NWS and designed to produce extended streamflow forecasts for river systems throughout the United States. An alternative geostatistical technique has been proposed to estimate snow water equivalent. In this research, we describe the two methodologies and compare the accuracy of the estimates produced by each technique. We illustrate their application and compare their estimation accuracy using snow data collected in the North Fork Clearwater River basin in Idaho.  相似文献   
626.
ABSTRACT: Environmental decision making involving trace-levels of contaminants can be complicated by censoring, the practice of reporting concentrations either as less than the limit of detection (LOD) or as not detected (ND) when a test result is less than the LOD. Censoring can result in data series that are difficult to meaningfully summarize, graph, and analyze through traditional statistical methods. In spite of the relatively large measurement errors associated with test results below the LOD, simple and meaningful analyses can be carried out that provide valuable information not available if data are censored. For example, an indication of increasing levels of contamination at the fringe of a plume can act as an early warning signal to trigger further study, an increased sampling frequency, or a higher level of remediation at the source. This paper involves the application of nonparametric trend analyses to uncensored trace-level groundwater monitoring data collected between March 1991 and August 1994 on dissolved arsenic and chromium for seven wells at an industrial site in New York.  相似文献   
627.
ABSTRACT: Three processes were examined as causing snowpack changes in forest clearings. Two of the three contribute to increases and one counteracts by reducing snowpack. The two that increase snowpack are redistribution and decreased loss to interception. Snow evaporation from a clearing counteracts snowpack increases. Research has indicated that as vegetation density increases, so too does the loss to interception. As snow in the canopy reaches the limit that the canopy can hold (the threshold amount) evaporation increases. Aerodynamics of the forest canopy were studied as well. As timber is cut, wind patterns are disturbed, creating disruptions in the wind velocity gradient depositing snow in openings. This redistribution leads to an increased snow water equivalent and augments runoff. Snow evaporation was shown to increase proportionally with opening size. Evaporation offsets the water yield gains derived from forest cut. It was found that this offset is inclusive to the measurements of water yield changes in experimental forests. An optimal size of harvest block may be five tree heights in width as suggested by numerous studies.  相似文献   
628.
This article describes an approach to assessing spatial and temporal land-use and land-cover changes in and adjacent to protected areas and to the measurement of landscape stability within a protected area. Methods employed include aerial photographic interpretation and GIS technology. Odum's four-compartment ecosystem model provides the conceptual framework for assessing landscape stability. The study area is a selected sample of the Upper San Pedro National Riparian Conservation Area in the high desert grassland of southeastern Arizona. Significant changes were observed in the landscape matrix and riparian ecosystem. However, when these changes were assessed in the context of Odum's model, the change was nonsignificant. Implications of the approach and potential applications in protected area management are discussed.  相似文献   
629.
With the advent of modern sanitary landfill closure techniques, the opportunity exists for transforming municipal landfills into urban woodlands. While costs of fullscale reforestation are generally prohibitive, a modest planting of clusters of trees and shrubs could initiate or accelerate population expansions and natural plant succession from open field to diverse forest. However, among woody species that have been screened for use on landfills, these ecological potentials have not yet been investigated. We examined a 14-yr-old landfill plantation in New Jersey, USA, established to test tolerance of 19 species of trees and shrubs to landfill environments. We measured survivorship, reproduction, and recruitment within and around the experimental installation. Half of the original 190 plants were present, although survival and growth rates varied widely among species. An additional 752 trees and shrubs had colonized the plantation and its perimeter, as well as 2955 stems of vines. However, the great majority (>95%) of woody plants that had colonized were not progeny of the planted cohort, but instead belonged to 18 invading species, mostly native, bird-dispersed, and associated with intermediate stages of secondary plant succession. Based on this evidence, we recommend that several ecological criteria be applied to choices of woody species for the restoration of municipal landfills and similar degraded sites, in order to maximize rapid and economical establishment of diverse, productive woodlands.  相似文献   
630.
ABSTRACT: The degradation of the optical aesthetics in the mouth of Onondaga Creek, New York, that occurs during high flow periods as a result of the influx of large quantities of suspended solids, is documented. Features of the degradation include very low clarity (Secchi disc minimum of approximately 0.1 m) and a brown ‘muddy’ appearance. The reduced clarity is mostly a result of increased light scattering. Loading and concentration profiles obtained for an approximately 35 km interval above the creek mouth over a wide range of flow indicates most of the suspended solids received during runoff events is resuspended stream sediment and eroded bank material. Application of microscopy-based individual particle analysis techniques indicates that the origin of most of these deposits and much of the suspended solids during runoff events is point source inputs, termed ‘mud boils,’ located approximately 32 km upstream of the creek mouth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号