首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1076篇
  免费   29篇
  国内免费   9篇
安全科学   71篇
废物处理   37篇
环保管理   292篇
综合类   83篇
基础理论   308篇
环境理论   3篇
污染及防治   189篇
评价与监测   84篇
社会与环境   42篇
灾害及防治   5篇
  2023年   10篇
  2022年   13篇
  2021年   15篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   31篇
  2016年   41篇
  2015年   26篇
  2014年   33篇
  2013年   73篇
  2012年   52篇
  2011年   73篇
  2010年   49篇
  2009年   42篇
  2008年   61篇
  2007年   67篇
  2006年   60篇
  2005年   41篇
  2004年   44篇
  2003年   46篇
  2002年   35篇
  2001年   21篇
  2000年   12篇
  1999年   20篇
  1998年   17篇
  1997年   15篇
  1996年   20篇
  1995年   22篇
  1994年   15篇
  1993年   13篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
  1968年   1篇
  1938年   1篇
排序方式: 共有1114条查询结果,搜索用时 750 毫秒
421.
Ambient airborne particulate matter (PM) in southwestern North America consists of naturally derived desert dust, plus anthropogenic inputs from several sources. Epiphytic lichens (Usnea sp.) in this region are a useful biomonitor for the airborne PM because they derive nutrients and moisture largely from incorporated atmospheric aerosols, and not by absorption from the host tree limb from which they are suspended. Using a broad-based sampling strategy from southern Chihuahua, Mexico, to northern New Mexico, USA, we show that select elemental abundance ratios and lead isotopes from epiphytic lichens are useful for distinguishing between sources of airborne PM, and for gauging anthropogenic inputs into desert ecosystems. Abundance patterns of the trace elements La, Nd, and Sm in the lichens suggest origination from continental crust, but rare earth elements display a pronounced enrichment relative to the major element Fe by a factor of about 5. This enrichment appears related to geologic weathering, aeolian transport, and grain-size biases toward trace-element-rich mineral grains in the arid setting. Using the metal Pb as an indicator of human inputs, epiphytic lichens typically show Pb enrichments by a factor of about 25–60 over typical upper crustal values. Regional-scale differences in Pb isotope ratios of these lichens relate to different pollutant sources in southwestern North America.  相似文献   
422.
Abstract: Matrix population models have entered the mainstream of conservation biology, with analysis of proportional sensitivities (elasticity analysis) of demographic rates becoming important components of conservation decision making. We identify areas where management applications using elasticity analysis potentially conflict with the mathematical basis of the technique, and we use a hypothetical example and three real data sets (Prairie Chicken [   Tympanuchus cupido ], desert tortoise [ Gopherus agassizii ], and killer whale [ Orcinus orca ]) to evaluate the extent to which conservation recommendations based on elasticities might be misleading. First, changes in one demographic rate can change the qualitative ranking of the elasticity values calculated from a population matrix, a result that dampens enthusiasm for ranking conservation actions based solely on which rates have the highest elasticity values. Second, although elasticities often provide accurate predictions of future changes in population growth rate under management perturbations that are large or that affect more than one rate concurrently, concordance frequently fails when different rates vary by different amounts. In particular, when vital rates change to their high or low values observed in nature, predictions of future growth rate based on elasticities of a mean matrix can be misleading, even predicting population increase when the population growth rate actually declines following a perturbation. Elasticity measures will continue to be useful tools for applied ecologists, but they should be interpreted with considerable care. We suggest that studies using analytical elasticity analysis explicitly consider the range of variation possible for different rates and that simulation methods are a useful tool to this end.  相似文献   
423.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   
424.
We update the Wigington et al. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often in situations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.  相似文献   
425.
Global and continental scale flood forecast provide coarse resolution flood forecast, but from the perspective of emergency management, flood warnings should be detailed and specific to local conditions. The desired refinement can be provided by the use of downscaling global scale models and through the use of distributed hydrologic models to produce a high‐resolution flood forecast. Three major challenges associated with transforming global flood forecasting to a local scale are addressed in this work. The first is using open‐source software tools to provide access to multiple data sources and lowering the barriers for users in management agencies at local level. This can be done through the Tethys Platform that enables web water resources modeling applications. The second is finding a practical solution for the computational requirements associated with running complex models and performing multiple simulations. This is done using Tethys Cluster that manages distributed and cloud computing resources as a companion to the Tethys Platform for web app development. The third challenge is discovering ways to downscale the forecasts from the global extent to the local context. Three modeling strategies have been tested to address this, including downscaling of coarse resolution global runoff models to high‐resolution stream networks and routing with Routing Application for Parallel computatIon of Discharge (RAPID), the use of hierarchical Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) distributed models, and pre‐computed distributed GSSHA models.  相似文献   
426.
At the nexus of watersheds, land, coastal areas, oceans, and human settlements, river delta regions pose specific challenges to environmental governance and sustainability. Using the Amazon Estuary-Delta region (AD) as our focus, we reflect on the challenges created by the high degree of functional interdependencies shaping social–ecological dynamics of delta regions. The article introduces the initial design of a conceptual framework to analyze delta regions as coupled social–ecological systems (SES). The first part of the framework is used to define a delta SES according to a problem and/or collective action dilemma. Five components can be used to define a delta SES: social–economic systems, governance systems, ecosystems-resource systems, topographic-hydrological systems, and oceanic-climate systems. These components are used in association with six types of telecoupling conditions: socio-demographic, economic, governance, ecological, material, and climatic-hydrological. The second part of the framework presents a strategy for the analysis of collective action problems in delta regions, from sub-delta/local to delta to basin levels. This framework is intended to support both case studies and comparative analysis. The article provides illustrative applications of the framework to the AD. First, we apply the framework to define and characterize the AD as coupled SES. We then utilize the framework to diagnose an example of collective action problem related to the impacts of urban growth, and urban and industrial pollution on small-scale fishing resources. We argue that the functional interdependencies characteristic of delta regions require new approaches to understand, diagnose, and evaluate the current and future impacts of social–ecological changes and potential solutions to the sustainability dilemmas of delta regions.  相似文献   
427.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   

428.
Chromium speciation in the blood of metal-on-metal hip implant patients   总被引:1,自引:0,他引:1  
The objective of this study was to determine the valence state of chromium (Cr) in the blood of individuals with Cr-containing metal hip implants. Serum and red blood cell (RBC) Cr concentrations from 52 patients with Cr-containing total hip arthroplasties were measured preoperatively and at 3, 12, and 24 months postoperatively. Geometric mean and median pre-surgery serum Cr concentrations were consistently below 0.2 µg/L, while geometric mean and median pre-op RBC Cr concentrations were typically about four- to six-fold higher than the serum values. A significant 5- to 13-fold increase was found in the mean and median serum Cr concentrations three months post-surgery, with an 8- to 18-fold rise at 12 and 24 months, respectively. Steady-state serum concentrations were reached between 3 and 12 months. In contrast, there were no marked differences in mean and median RBC Cr concentrations pre- and post-surgery. Slope regression analysis for our data was similar to those reported for Cr(III) in spiked blood samples. The analysis showed that Cr released from hip implants preferentially distributed into serum and not RBC, indicating that the form of Cr present in blood of hip implant patients was in the form of non-toxic Cr(III). Our findings indicate that blood Cr concentrations Cr(III) associated with metal implants do not pose an adverse health risk to patients, which is in agreement with findings published by most investigators.  相似文献   
429.
Phosphorus (P) is a limiting nutrient in freshwater systems and when present in runoff from agricultural lands or urban centers may contribute to excessive periphyton growth. In this study, we examined the link between soil erosion and delivery of eroded soil to streams during flow events, and the impact of that freshly deposited soil on dissolved reactive P (DRP) concentrations and periphyton growth under baseflow conditions when the risk of stream eutrophication is greatest. A microcosm experiment was designed to simulate the release of P from soil which had been amended with different amounts of P fertilizer to overlying water during baseflow conditions. Unglazed tiles, inoculated for five days in a second order stream, were incubated for seven days in microcosms containing soil with eight levels of soil Mehlich‐3 plant available phosphorus (M3P) ranging from 20 to 679 mg/kg M3P. Microcosm DRP was monitored. Following incubation tiles were scraped and the periphyton analyzed for chlorophyll a. Microcosm DRP concentrations increased with increasing soil M3P and equilibrium phosphorus concentration (EPC0). Relationships between M3P, EPC0, and DRP were nonlinear and increases in soil M3P and/or DRP had a greater impact on biomass accumulation when these parameters were above threshold values of 30 mg/kg M3P and 0.125 mg/L DRP. Significantly, this ecological threshold corresponds to the agronomic thresholds above which increased soil M3P does not increase plant response.  相似文献   
430.
The Intergovernmental Panel on Climate Change quantified a cumulative remaining carbon budget beyond which there is a high likelihood global average temperatures will increase more than 2 °C above preindustrial temperature. While there is global participation in mitigation efforts, there is little global collaboration to cooperatively mitigate emissions. Instead, countries have been acting as individual agents with independent emission reduction objectives. However, such asymmetric unilateral climate policies create the opportunity for carbon leakage resulting from the shift in embodied carbon emissions within trade networks. In this analysis, we use an optimization-based model of the global crude trade as a case study to demonstrate the importance of a cooperative, system-level approach to climate policy in order to most effectively, efficiently, and equitably achieve carbon mitigation objectives. To do this, we first characterize the cost and life cycle greenhouse gas emissions associated with the 2014 crude production and consumption system by aggregating multiple data sources and developing a balanced trade matrix. We then optimize this network to demonstrate the potential for carbon mitigation through more efficient use of crude resources. Finally, we implement a global carbon cap on total annual crude emissions. We find that such a cap would require crude consumption to drop from 4.2 gigatons (Gt) to 1.1 Gt. However, if each country had an individual carbon allocation in addition to the global cap consistent with the nationally determined contribution limits resulting from the 2015 United Nations Climate Change Conference, allowable consumption would further decrease to approximately 770 million metric tonnes. Additionally, the carbon accounting method used to assign responsibility for embodied carbon emissions associated with the traded crude further influences allowable production and consumption for each country. The simplified model presented here highlights how global cooperation and a system-level cooperative approach could guide climate policy efforts to be more cost effective and equitable, while reducing the leakage potential resulting from shifting trade patterns of embodied carbon emissions. Additionally, it demonstrates how the spatial distribution of crude consumption and production patterns change under a global carbon cap given various carbon accounting strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号