首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9870篇
  免费   2篇
  国内免费   7篇
安全科学   35篇
废物处理   786篇
环保管理   1222篇
综合类   974篇
基础理论   3130篇
污染及防治   1780篇
评价与监测   1036篇
社会与环境   915篇
灾害及防治   1篇
  2023年   10篇
  2022年   34篇
  2021年   26篇
  2020年   10篇
  2019年   15篇
  2018年   1478篇
  2017年   1385篇
  2016年   1209篇
  2015年   136篇
  2014年   26篇
  2013年   44篇
  2012年   475篇
  2011年   1345篇
  2010年   703篇
  2009年   603篇
  2008年   878篇
  2007年   1227篇
  2006年   6篇
  2005年   20篇
  2004年   34篇
  2003年   62篇
  2002年   97篇
  2001年   14篇
  2000年   10篇
  1999年   2篇
  1998年   9篇
  1984年   11篇
  1983年   8篇
  1935年   2篇
排序方式: 共有9879条查询结果,搜索用时 15 毫秒
71.
Underground coal gasification (UCG) is an advancing technology that is receiving considerable global attention as an economic and environmentally friendly alternative for exploitation of coal deposits. UCG has the potential to decrease greenhouse gas emissions (GHG) during the development and utilization of coal resources. In this paper, the life cycle of UCG from in situ coal gasification to utilization for electricity generation is analyzed and compared with coal extraction through conventional coal mining and utilization in power plants. Four life cycle assessment models have been developed and analyzed to compare (greenhouse gas) GHG emissions of coal mining, coal gasification and power generation through conventional pulverized coal fired power plants (PCC), supercritical coal fired (SCPC) power plants, integrated gasification combined cycle plants for coal (Coal-IGCC), and combined cycle gas turbine plants for UCG (UCG-CCGT). The analysis shows that UCG is comparable to these latest technologies and in fact, the GHG emissions from UCG are about 28 % less than the conventional PCC plant. When combined with the economic superiority, UCG has a clear advantage over competing technologies. The comparison also shows that there is considerable reduction in the GHG emissions with the development of technology and improvements in generation efficiencies.  相似文献   
72.
Farm nutrient management has been identified as one of the most important factors determining the economic and environmental performance of dairy cattle (Bos taurus) farming systems. Given the environmental problems associated with dairy farms, such as emissions of greenhouse gases (GHG), and the complex interaction between farm management, environment and genetics, there is a need to develop robust tools which enable scientists and policy makers to study all these interactions. This paper describes the development of a simple model called NUTGRANJA 2.0 to evaluate GHG emissions and nitrogen (N) and phosphorus (P) losses from dairy farms. NUTGRANJA 2.0 is an empirical mass-balance model developed in order to simulate the main transfers and flows of N and P through the different stages of the dairy farm management. A model sensitivity test was carried out to explore some of the sensitivities of the model in relation to the simulation of GHG and N emissions. This test indicated that both management (e.g. milk yield per cow, annual fertiliser N rate) and site-specific factors (e.g. % clover (Trifolium) in the sward, soil type, and % land slope) had a large effect on most of the model state variables studied (e.g. GHG and N losses).  相似文献   
73.
The paper estimates and compares the level of Reducing Emissions from Deforestation and Degradation (REDD+) payments required to compensate for the opportunity costs (OCs) of stopping the conversion of montane forest and miombo woodlands into cropland in two agro-ecological zones in Morogoro Region in Tanzania. Data collected from 250 households were used for OC estimation. REDD+ payment was estimated as the net present value (NPV) of agricultural rent and forest rent during land clearing, minus net returns from sustainable wood harvest, divided by the corresponding reduction in carbon stock. The median compensation required to protect the current carbon stock in the two vegetation types ranged from USD 1 tCO2e?1 for the montane forest to USD 39 tCO2e?1 for the degraded miombo woodlands, of which up to 70 % and 16 %, respectively, were for compensating OCs from forest rent during land clearing. The figures were significantly higher when the cost of farmers’ own labor was not taken into account in NPV calculations. The results also highlighted that incentives in the form of sustainable harvests could offset up to 55 % of the total median OC to protect the montane forest and up to 45 % to protect the miombo woodlands, depending on the wage rates. The findings suggest that given the possible factors that can potentially affect estimates of REDD+ payments, avoiding deforestation of the montane forest would be feasible under the REDD+ scheme. However, implementation of the policy in villages around the miombo area would require very high compensation levels.  相似文献   
74.
The Zambezi River Basin in southern Africa is relatively undeveloped from both a hydropower and irrigated agriculture perspective, despite the existence of the large Kariba and Cahora Bassa dams. Accelerating economic growth increases the potential for competition for water between hydropower and irrigated agriculture, and climate change will add additional stresses to this system. The objective of this study was to assess the vulnerability of major existing and planned new hydropower plants to changes in climate and upstream irrigation demand. Our results show that Kariba is highly vulnerable to a drying climate, potentially reducing average electricity generation by 12 %. Furthermore, the expansion of Kariba generating capacity is unlikely to deliver the expected increases in production even under a favourable climate. The planned Batoka Gorge plant may also not be able to reach the anticipated production levels from the original feasibility study. Cahora Bassa’s expansion is viable under a wetting climate, but its potential is less likely to be realised under a drying climate. The planned Mphanda Nkuwa plant can reach expected production levels under both climates if hydropower is given water allocation priority, but not if irrigation is prioritised, which is likely. For both Cahora Bassa and Mphanda Nkuwa, prioritising irrigation demand over hydropower could severely compromise these plants’ output. Therefore, while climate change is the most important overall driver of variation in hydropower potential, increased irrigation demand will also have a major negative impact on downstream plants in Mozambique. This implies that climate change and upstream development must be explicitly incorporated into both project and system expansion planning.  相似文献   
75.
Public policies are promoting biofuels as an alternative to fossil fuel consumption in order to mitigate greenhouse gas (GHG) emissions. However, the mitigation benefit can be at least partially compromised by emissions occurring during feedstock production. One of the key sources of GHG emissions from biofuel feedstock production, as well as conventional crops, is soil nitrous oxide (N2O), which is largely driven by nitrogen (N) management. Our objective was to determine how much GHG emissions could be reduced by encouraging alternative N management practices through application of nitrification inhibitors and a cap on N fertilization. We used the US Renewable Fuel Standards (RFS2) as the basis for a case study to evaluate technical and economic drivers influencing the N management mitigation strategies. We estimated soil N2O emissions using the DayCent ecosystem model and applied the US Forest and Agricultural Sector Optimization Model with Greenhouse Gases (FASOMGHG) to project GHG emissions for the agricultural sector, as influenced by biofuel scenarios and N management options. Relative to the current RSF2 policy with no N management interventions, results show decreases in N2O emissions ranging from 3 to 4 % for the agricultural sector (5.5–6.5 million metric tonnes CO2?eq.?year?1; 1 million metric tonnes is equivalent to a Teragram) in response to a cap that reduces N fertilizer application and even larger reductions with application of nitrification inhibitors, ranging from 9 to 10 % (15.5–16.6 million tonnes CO2?eq.?year?1). The results demonstrate that climate and energy policies promoting biofuel production could consider options to manage the N cycle with alternative fertilization practices for the agricultural sector and likely enhance the mitigation of GHG emissions associated with biofuels.  相似文献   
76.
This study characterizes the persistence of human norovirus in Eastern oysters (Crassostrea virginica) held at different seawater temperatures. Oysters were contaminated with human norovirus GI.1 (Norwalk strain 8FIIa) by exposing them to virus-contaminated water at 15 °C, and subsequently holding them at 7, 15, and 25 °C for up to 6 weeks. Viral RNA was extracted from oyster tissue and hemocytes and quantitated by RT-qPCR. Norovirus was detected in hemocytes and oysters held at 7 and 15 °C for 6 weeks and in hemocytes and oysters held at 25 °C for up to 2 and 4 weeks, respectively. Results confirm that NoV is quite persistent within oysters and demonstrate that cooler water temperatures extend norovirus clearance times. This study suggests a need for substantial relay times to remove norovirus from contaminated shellfish and suggests that regulatory authorities should consider the effects of water temperature after a suspected episodic norovirus-contamination event.  相似文献   
77.
Viral contamination along the production chain is a significant concern in both food safety and livestock health. Pigs have been reported to act as a reservoir for zoonotic viruses, sometimes emerging ones, and epidemiological studies have shown direct links between the consumption of uncooked pork offal and cases of hepatitis caused by the hepatitis E virus (HEV) genotype 3 in humans. The presence of HEV in swine herds has been reported, but its dissemination in pork production environments is still unknown. To investigate viral contamination sources in the swine industry, 452 environment and fecal samples, including samples from livestock transportation vehicles, were collected over a period of 11 months from ten farms and one slaughterhouse that together represent a single production network. Hepatitis E virus RNA was detected by nested RT-PCR in 32 samples from both inside and outside farm buildings, on trucks, and, mostly, from fomites collected in the slaughterhouse yard, such as on a utility vehicle. Phylogenetic analysis showed a wide diversity of HEV genotype 3 strains, similar to human and swine strains previously found. According to the results of this study, the movements of trucks and utility vehicles might play an important role in HEV dissemination on a slaughterhouse site and throughout an entire network.  相似文献   
78.
We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape (Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh–eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth–fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean.  相似文献   
79.
Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.  相似文献   
80.
The objective of this study is to compare the prevalence of rotaviruses groups A and C in Egyptian children and aquatic environment. From 110 stool specimens of children with acute diarrhea and using RT-PCR, 35 samples (31.8 %) were positive for human rotavirus group A and 15 samples (13.6 %) were positive for human rotavirus group C. From 96 samples collected from Zenin wastewater treatment plant over a 2-year period (November 2009–October 2011) and using RT-PCR, rotavirus group A was detected in (4/24) 16.7 %, (5/24) 20.8 %, (4/24) 16.7 %, and (4/24) 16.7 %, while rotavirus group C was detected in (2/24) 8.3 %, (3/24) 12.5 %, (3/24) 12.5 %, and (0/24) 0 % in raw sewage, after primary sedimentation, after secondary sedimentation, and after final chlorination, respectively. Moreover, from 96 samples collected from El-Giza water treatment plant over a 2-year period (November 2009–October 2011), rotavirus group A was detected in (7/24) 29.2 %, (6/24) 25 %, (5/24) 20.8 %, and (3/24) 12.5 %, while rotavirus group C was detected in (3/24) 12.5 %, (1/24) 4.2 %, (1/24) 4.2 %, and (0/24) 0 % in raw Nile water, after sedimentation, after sand filtration, and after final chlorination, respectively. Using SYBR Green real-time RT-PCR, the number of human rotavirus group A genome or infectious units was higher than rotavirus group C. VP6 sequence analysis of the RT-PCR positive rotavirus group C samples revealed that four clinical specimens and three environmental samples showed similar sequences clustered with Moduganari/Human Nigerian strain AF 325806 with 98 % homology, and two clinical specimens and one environmental sample showed similar sequences clustered with Dhaka CB/Human Bangladesh strain AY 754826 with 97 % homology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号