首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   1篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   13篇
基础理论   14篇
污染及防治   45篇
评价与监测   8篇
社会与环境   7篇
  2023年   3篇
  2022年   11篇
  2021年   6篇
  2020年   6篇
  2019年   10篇
  2018年   4篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
51.
Safety and risk assessment are characterised by aspects, like subjectivity and objectivity. In this paper, relations between safety and risk are described. When a risk analysis is performed, it is important to realise that decision-making about risks is very complex, and not only technical aspects but also economical, environmental, comfort related, political, psychological and societal acceptance are aspects that play an important role. In order to balance safety measures with aspects, such as environmental, quality, and economical aspects, a weighted risk analysis methodology is proposed in this paper. This paper also provides a theoretical background regarding the scope of safety assessment in relation to the decision-making in complex urban development projects adjacent to or above transport routes of hazardous materials. In Western Europe, such projects are realised due to shortage of space. The weighted risk analysis is an interesting tool comparing different risks, such as investments, economical losses and the loss of human lives, in one-dimension (e.g., money), since both investments and risks could be expressed solely in money. Finally, the weighted risk analysis approach is applied in a case study of Bos and Lommer, Amsterdam.  相似文献   
52.
Phytoremediation appears to be a promising technique for metal soil clean up, although its successful application on a large scale still remains a challenge. Field experiments for six scented Pelargonium cultivars, conducted on two Pb-contaminated calcareous and acidic soils, revealed vigorous plant growth, with no symptoms of morpho-phytotoxicity in spite of high Pb accumulation levels. Lead contents in the harvestable parts of all plants grown on the acidic and more contaminated soil were significantly higher than those grown on the calcareous soil. Three cultivars (Attar of Roses, Clorinda and Atomic Snowflake) are Pb-hyperaccumulator plants: they accumulated more than 1000 mg Pb kg−1 DW, with high biomass produced.  相似文献   
53.
Long-term dynamics of population decline can improve the conservation perspectives and strategies for endanger species. In China, new gazetteers having systematic compilation and wide geographical coverage can be considered as an important complementary for reconstruction historical distribution. For historical and cultural reasons, an endangered species–lynx (Lynx lynx) was recorded regularly in new gazetteers. Therefore, the aim of this paper was to evaluate the population distribution in Northeast China from the 1950s to 2014. The data show that Felis lynx was widely distributed in Northeast China in the 1950s, but the number of the occurrence records have been significantly reduced by 85.6% in the last 60 years. This research also enlightens us that the new gazetteers can contribute to data shortage and it would be helpful to conservation biology.  相似文献   
54.
Flynn DF  Mirotchnick N  Jain M  Palmer MI  Naeem S 《Ecology》2011,92(8):1573-1581
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.  相似文献   
55.
56.
57.
The textile industry, as recognized conformist and stake industry in the world’s economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based “classical/conventional” treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.  相似文献   
58.
Water scarcity in China would possibly be aggravated by rapid increase in water demand for irrigation due to climate change. This paper focuses on the mechanism of climate change impact on regional irrigation water demand by considering the dynamic feedback relationships among climate change, irrigation water demand and adaptation measures. The model in implemented using system dynamics approach and employed in Baojixia irrigation district located in Shaanxi Province of China to analyses the changes in irrigation water demand under different climate change scenarios. Obtained results revealed that temperature will be the dominant factor to determine irrigation water demand in the area. An increase of temperature by 1 °C will result in net irrigation water demand to increase by about 12,050?×?104 m3 and gross water demand by about 20,080?×?104 m3 in the area. However, irrigation water demand will not increase at the same rate of temperature rise as the adaptation measures will eventually reduce the water demand increased by temperature rise. It is expected that the modeling approach presented in this study can be used in adopting policy responses to reduce climate change impacts on water resources.  相似文献   
59.
The environmental fate of trichloro-, dichloro-, and monochloroacetic acids, and trifluoroacetic acid was investigated using field aquatic microcosms and laboratory sediment-water systems. Trifluoroacetic acid was extremely persistent and showed no degradation during a one-year field study, though it appeared to undergo transient partitioning within an unknown pond phase as the temperature of the surroundings was reduced. Of the three chloroacetic acids, trichloro had the longest residence time (induction and decay) (approximately 40 d), dichloro the shortest (approximately 4 d), and monochloro an intermediate residence time (approximately 14 d). Laboratory studies suggest that the biodegradation of trichloro-, dichloro-, and monochloroacetic acids leads primarily to the formation of chloride and oxalic, glyoxalic, and glycolic acids, respectively.  相似文献   
60.
The effects of a 1.5 °C global change on irrigation costs and carbon emissions in a groundwater-dependent irrigation system were assessed in the northwestern region of Bangladesh and examined at the global scale to determine possible global impacts and propose necessary adaptation measures. Downscaled climate projections were obtained from an ensemble of eight general circulation models (GCMs) for three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5 and were used to generate the 1.5 °C warming scenarios. A water balance model was used to estimate irrigation demand, a support vector machine (SVM) model was used to simulate groundwater levels, an energy-use model was used to estimate carbon emissions from the irrigation pump, and a multiple linear regression (MLR) model was used to simulate the irrigation costs. The results showed that groundwater levels would likely drop by only 0.03 to 0.4 m under a 1.5 °C temperature increase, which would result in an increase in irrigation costs and carbon emissions ranging from 11.14 to 148.4 Bangladesh taka (BDT) and 0.3 to 4% CO2 emissions/ha, respectively, in northwestern Bangladesh. The results indicate that the impacts of climate change on irrigation costs for groundwater-dependent irrigation would be negligible if warming is limited to 1.5 °C; however, increased emissions, up to 4%, from irrigation pumps can have a significant impact on the total emissions from agriculture. This study revealed that similar impacts from irrigation pumps worldwide would result in an increase in carbon emissions by 4.65 to 65.06 thousand tons, based only on emissions from groundwater-dependent rice fields. Restricting groundwater-based irrigation in regions where the groundwater is already vulnerable, improving irrigation efficiency by educating farmers and enhancing pump efficiency by following optimum pumping guidelines can mitigate the impacts of climate change on groundwater resources, increase farmers’ profits, and reduce carbon emissions in regions with groundwater-dependent irrigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号