首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
安全科学   2篇
环保管理   4篇
综合类   2篇
基础理论   5篇
污染及防治   7篇
社会与环境   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2002年   2篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1969年   1篇
排序方式: 共有21条查询结果,搜索用时 5 毫秒
11.
Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Aqueous photooxidation in clouds, fogs and aerosols is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that contribute SOA mass. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products (organic acids and oligomers), we predict that aqueous photooxidation of glycolaldehyde and other aldehydes in cloud, fog, and aerosol water is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under-prediction of organic PM concentrations.  相似文献   
12.
13.
Aqueous OH radical oxidation of methylglyoxal in clouds and wet aerosols is a potentially important global and regional source of secondary organic aerosol (SOA). We quantify organic acid products of the aqueous reaction of methylglyoxal (30–3000 μM) and OH radical (approx. 4 × 10?12 M), model their formation in the reaction vessel and investigate how the starting concentrations of precursors and the presence of acidic sulfate (0–840 μM) affect product formation. Predicted products were observed. The predicted temporal evolution of oxalic acid, pyruvic acid and total organic carbon matched observations at cloud relevant concentrations (30 μM), validating this methylglyoxal cloud chemistry, which is currently being implemented in some atmospheric models of SOA formation. The addition of sulfuric acid at cloud relevant concentrations had little effect on oxalic acid yields. At higher concentrations (3000 μM), predictions deviate from observations. Larger carboxylic acids (≥C4) and other high molecular weight products become increasingly important as concentration increases, suggesting that small carboxylic acids are the major products in clouds while larger carboxylic acids and oligomers are important products in wet aerosols.  相似文献   
14.
Secondary organic aerosol (SOA) formation is enhanced on acidic seed particles; SOA also forms during cloud processing reactions where acidic sulfate is prevalent. Recently several studies have focused on the identification of organosulfates in atmospheric aerosols or smog chamber experiments, and upon the mechanism of formation for these products. We identify several organosulfate products formed during the laboratory OH radical oxidation of dilute aqueous glycolaldehyde in the presence of sulfuric acid. We propose a radical–radical reaction mechanism as being consistent with formation of these products under our experimental conditions. Using a kinetics model we estimate that organosulfates account for less than 1% of organic matter formed from these precursors during cloud processing. However, in wet acidic aerosols, where precursors are highly concentrated and acidic sulfate makes up close to half of the aerosol mass, this radical–radical reaction could account for significant organosulfate production.  相似文献   
15.
Runoff from turf environments, such as golf courses, is of increasing concern due to the associated chemical contamination of lakes, reservoirs, rivers, and ground water. Pesticide runoff due to fungicides, herbicides, and insecticides used to maintain golf courses in acceptable playing condition is a particular concern. One possible approach to mitigate such contamination is through the implementation of effective vegetative filter strips (VFS) on golf courses and other recreational turf environments. The objective of the current study was to screen ten aesthetically acceptable plant species for their ability to remove four commonly-used and degradable pesticides: chlorpyrifos (CP), chlorothalonil (CT), pendimethalin (PE), and propiconazole (PR) from soil in a greenhouse setting, thus providing invaluable information as to the species composition that would be most efficacious for use in VFS surrounding turf environments. Our results revealed that blue flag iris (Iris versicolor) (76% CP, 94% CT, 48% PE, and 33% PR were lost from soil after 3 mo of plant growth), eastern gama grass (Tripsacum dactyloides) (47% CP, 95% CT, 17% PE, and 22% PR were lost from soil after 3 mo of plant growth), and big blue stem (Andropogon gerardii) (52% CP, 91% CT, 19% PE, and 30% PR were lost from soil after 3 mo of plant growth) were excellent candidates for the optimization of VFS as buffer zones abutting turf environments. Blue flag iris was most effective at removing selected pesticides from soil and had the highest aesthetic value of the plants tested.  相似文献   
16.
17.
Biodegradation of an amphoteric surfactant commonly used in personal care products, disodium cocoamphodiacetate (DSCADA), was evaluated. Results from respirometry experiments indicated that high levels of DSCADA (>216 mg/L) may be toxic to bacteria in wastewater treatment processes. Limited biodegradation, with 50% dissolved organic carbon (DOC) removal and 80% chemical oxygen demand removal was observed in batch assays, while complete removal of the parent compound, DSCADA, was noted. Oxygen biosensors were used to evaluate biodegradability of the metabolites present in the batch samples. Additional aerobic microbial activity was not detected in these samples, even with a residual DOC of approximately 45 mg/L. Results from this research indicate that biodegradability of DSCADA is limited and recalcitrant metabolites may be formed. Because DSCADA is a commonly used surfactant and is present in domestic and industrial wastewater, the associated risk posed by residual compounds should be carefully evaluated.  相似文献   
18.
19.
The seasonal treatment efficiency of a pilot-scale constructed wetland system located outdoors in a semi-arid, temperate climate was evaluated for graywater in a comprehensive, 1-year study. The system consisted of two wetland beds in series--a free water surface bed followed by a subsurface flow bed. Water quality monitoring evaluated organics, solids, nutrients, microbials, and surfactants. The results showed that the wetland substantially reduced graywater constituents during fall, spring, and summer, including biochemical oxygen demand (BOD) (92%), total nitrogen (85%), total phosphorus (78%), total suspended solids (TSS) (73%), linear alkylbenzene sulfonate (LAS) surfactants (94%), and E. coli (1.7 orders of magnitude). Except for TSS, lower removals of graywater constituents were noted in winter--BOD (78%), total nitrogen (64%), total phosphorus (65%), LAS (87%), and E. coli (1.0 order), indicating that, although wetland treatment slowed during the winter, the system remained active, even when the average water temperature was 5.2 +/- 4.5 degrees C.  相似文献   
20.
We report the results of a mail questionnaire for 312 manufacturing firms in the province of Ontario (Canada). We conducted a cross-sectional analysis of workplace level health and safety policies, practices and attitudes. Analyses were conducted across firm categories based upon lost-time frequency rate (LTFR) data. Lower LTFRs were associated with paternalistic initiatives, recording of occupational health and safety (OHS) measures, greater involvement of workers in decision-making, and better managerial attitudes concerning the importance of OHS. The composition of the Joint Health and Safety Committee (JHSC), a committee mandated in all workplaces we sampled, differed according to injury rate: the mean number of worker (vs. management) members on the JHSC was higher for lower injury sites, and the mean number of worker members attending JHSC meetings was also higher for lower injury worksites. In addition, workplaces with lower LTFR benefitted by having JHSCs with more executive functions and greater worker involvement. In conclusion, managerial and worker participation in OHS initiatives characterizes safer workplaces. Also, general concern of management towards OHS—illustrated by both attitudes and concrete actions—is also associated with lower injury rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号