首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9837篇
  免费   113篇
  国内免费   93篇
安全科学   283篇
废物处理   460篇
环保管理   1243篇
综合类   1193篇
基础理论   2668篇
环境理论   2篇
污染及防治   2771篇
评价与监测   708篇
社会与环境   667篇
灾害及防治   48篇
  2022年   100篇
  2021年   76篇
  2020年   65篇
  2019年   72篇
  2018年   145篇
  2017年   139篇
  2016年   229篇
  2015年   164篇
  2014年   237篇
  2013年   743篇
  2012年   296篇
  2011年   440篇
  2010年   362篇
  2009年   395篇
  2008年   470篇
  2007年   476篇
  2006年   422篇
  2005年   366篇
  2004年   323篇
  2003年   375篇
  2002年   325篇
  2001年   503篇
  2000年   331篇
  1999年   192篇
  1998年   137篇
  1997年   133篇
  1996年   138篇
  1995年   162篇
  1994年   125篇
  1993年   102篇
  1992年   123篇
  1991年   118篇
  1990年   130篇
  1989年   130篇
  1988年   94篇
  1987年   87篇
  1986年   65篇
  1985年   90篇
  1984年   89篇
  1983年   86篇
  1982年   82篇
  1981年   73篇
  1980年   61篇
  1979年   68篇
  1977年   53篇
  1976年   48篇
  1975年   53篇
  1974年   51篇
  1973年   53篇
  1970年   45篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
691.
Concentrations of arsenic and four additional trace elements (Cu, Cr, Ni, and Zn) were determined by inductively coupled plasma–optical emission spectrometry in the muscular tissue of the yellow catfish (Cathorops spixii) and the urutu catfish (Genidens genidens) from Paranaguá Estuarine Complex, Brazil (PEC). The PEC can be characterized by an environment of high ecological and economic importance in which preserved areas of rainforest and mangroves coexist with urban activities as ports and industries. The average concentrations (in milligram per kilogram dry weight) of elements in the muscle tissue of C. spixii are as follows: Zn (31), As (17), Cu (1.17), Cr (0.62), and Ni (0.28). Similar concentrations could be found in G. genidens with exception of As: Zn (36), As (4.78), Cu (1.14), Cr (0.51), and Ni (0.14). Fish from the geographic northern rural region (Guaraqueçaba–Benito) display higher As concentrations in the muscle tissues than fish found in the south-western (urban) part of the PEC. An international comparison of muscle tissue concentrations of trace elements in fish was made. Except for Ni in C. spixii, a tendency of decrease in element concentration with increasing size (age) of the fish could be observed. According to the National Health Surveillance Agency of Brazil, levels of Cr and As exceeded the permissible limits for seafood. An estimation of the provisional tolerable weekly intake of As was calculated with 109 % for C. spixii and with 29 % for G. genidens.  相似文献   
692.
To identify the potential sources responsible for the particulate matter emission from secondary iron and steel smelting factory environment, PM2.5 and PM2.5?10 particles were collected using the low-volume air samplers twice a week for a year. The samples were analyzed for the elemental and black carbon content using x-ray fluorescence spectrometer and optical transmissometer, respectively. The average mass concentrations were 216.26, 151.68, and 138. 62 μg/m3 for PM2.5 and 331.36, 190.01, and 184.60 μg/m3 for PM2.5?10 for the production, outside M1 and outside M2 sites, respectively. The same size resolved data set were used as input for the positive matrix factorization (PMF), principal component factor analysis (PCFA), and Unmix (UNMIX) receptor modeling in order to identify the possible sources of particulate matter and their contribution. The PMF resolved four sources with their respective contributions were metal processing (33 %), e-waste (33 %), diesel emission (22 %) and soil (12 %) for PM2.5, and coking (50 %), soil (29 %), metal processing (16 %) and diesel combustion (5 %) for PM2.5?10. PCFA identified soil, metal processing, Pb source, and diesel combustion contributing 45, 41, 9, and 5 %, respectively to PM2.5 while metal processing, soil, coal combustion and open burning contributed 43, 38, 12, and 7 %, respectively to the PM2.5?10. Also, UNMIX identified metal processing, soil, and diesel emission with 43, 42 and 15 % contributions, respectively for the fine fraction, and metal processing (71 %), soil (21 %) and unidentified source (1 %) for the coarse fraction. The study concluded that metal processing and e-waste are the major sources contributing to the fine fraction while coking and soil contributed to the coarse fraction within the factory environment. The application of PMF, PCFA and UNMIX receptor models improved the source identification and apportionment of particulate matter drive in the study area.  相似文献   
693.
694.
695.
696.
697.
698.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
699.
Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm?1. These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.  相似文献   
700.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号