首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20337篇
  免费   157篇
  国内免费   122篇
安全科学   410篇
废物处理   951篇
环保管理   2444篇
综合类   2544篇
基础理论   5697篇
环境理论   5篇
污染及防治   4765篇
评价与监测   1518篇
社会与环境   2206篇
灾害及防治   76篇
  2022年   158篇
  2021年   154篇
  2020年   102篇
  2019年   120篇
  2018年   737篇
  2017年   713篇
  2016年   768篇
  2015年   310篇
  2014年   435篇
  2013年   1232篇
  2012年   688篇
  2011年   1368篇
  2010年   928篇
  2009年   1019篇
  2008年   1285篇
  2007年   1523篇
  2006年   674篇
  2005年   648篇
  2004年   564篇
  2003年   665篇
  2002年   647篇
  2001年   739篇
  2000年   516篇
  1999年   277篇
  1998年   212篇
  1997年   199篇
  1996年   192篇
  1995年   238篇
  1994年   181篇
  1993年   152篇
  1992年   173篇
  1991年   168篇
  1990年   195篇
  1989年   178篇
  1988年   135篇
  1987年   123篇
  1986年   104篇
  1985年   133篇
  1984年   147篇
  1983年   120篇
  1982年   123篇
  1981年   106篇
  1980年   104篇
  1979年   110篇
  1977年   82篇
  1976年   73篇
  1975年   79篇
  1974年   77篇
  1973年   84篇
  1972年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Tailpipe emissions in the road transportation system are a major source of air pollution and greenhouse gases. One of the possible approaches is to influence drivers’ routing decisions such that the emissions and fuel consumption is minimized. In order to evaluate such condition, we develop environmental traffic assignment (E-TA) models based on user equilibrium (UE) and system optimal (SO) behavioral principles. Extending the traditional travel time-based UE and SO principles to E-TA is not straightforward because, unlike travel time, the rate of emissions increases with the increase in vehicle speed beyond a certain point. The results of various TA models show a network-wide traffic control strategy in which vehicles are routed according to SO-based E-TA, can reduce system-wide emissions. However, a system in which drivers make routing decisions to minimize their own emissions (E-UE system) results in a paradoxical situation of increased individual as well as system-wide emissions.  相似文献   
992.
Industrially utilized river basins are frequently exposed to contaminants originating from polluting activities. However, the physical instability and probability of mass movement mobilization of contaminated soil into rivers have only received little attention. In this study, we present a GIS-based method to produce a regional overview of where and how contaminated areas are potentially exposed to slope instability. A landslide susceptibility-index was used to study the degree and distribution of overlap between contaminated sites and unstable ground. A contaminated area instability hazard classification was produced integrating slope instability and contamination risk classification. Our results indicate that mass movement can be tied mainly to a slope gradient ≥16°, a proximity to the river that is <500 m, a distance of <500 m from roads, concave surface curvature, and sand- and silt soils. Forty-six (22%) of all considered contaminated sites are located within areas with a non-negligible slope instability, of which a majority, 30 sites (14%) are situated on ground with a low or moderate instability. Three sites with a class 2 contamination risk (the 2nd highest class) are located on ground with a very high slope instability.  相似文献   
993.
Wybong Creek discharges salts into the agriculturally and industrially important Hunter River in New South Wales, Australia. Abrupt increases in salinity occur periodically in the mid-Wybong Creek catchment. In order to understand the processes which cause these abrupt increases, changes in surface and groundwater were investigated. It is shown that salinity increases can be attributed to highly discrete groundwater discharge directly into the river from below. Hourly electrical conductivity data measured in the river showed regular, diurnal electrical conductivity fluctuations of up to 350 μS cm?1. These fluctuations could not be attributed to barometric pressure, temperature, or evapotranspiration. Instead, a similar periodicity in surface water electrical conductivity and groundwater height in nearby groundwater wells was found. Fluctuations were of similar periodicity to the orthotides which cause fluctuations in surface water height and are induced by Earth tides. The geology in the mid-catchment area indicates conditions are optimal for Earth tides to impact groundwater. The reporting of orthotidal changes in water chemistry in this article is believed to be the first of its kind in the scientific literature, with the large fluctuations noted having important implications for water monitoring and management in the catchment. Further research investigating Earth-tide-induced phases of groundwater heights will better constrain the relationships between surface water chemistry and groundwater height.  相似文献   
994.
This study investigates land cover change near the abandoned Pine Point Mine in Canada’s Northwest Territories. Industrial mineral development transforms local environments, and the effects of such disturbances are often long-lasting, particularly in subarctic, boreal environments where vegetation conversion can take decades. Located in the Boreal Plains Ecozone, the Pine Point Mine was an extensive open pit operation that underwent little reclamation when it shut down in 1988. We apply remote sensing and landscape ecology methods to quantify land cover change in the 20 years following the mine’s closure. Using a time series of near-anniversary Landsat images, we performed a supervised classification to differentiate seven land cover classes. We used raster algebra and landscape metrics to track changes in land cover composition and configuration in the 20 years since the mine shut down. We compared our results with a site in Wood Buffalo National Park that was never subjected to extensive anthropogenic disturbance. This space-for-time substitution provided an analog for how the ecosystem in the Pine Point region might have developed in the absence of industrial mineral development. We found that the dense conifer class was dominant in the park and exhibited larger and more contiguous patches than at the mine site. Bare land at the mine site showed little conversion through time. While the combination of raster algebra and landscape metrics allowed us to track broad changes in land cover composition and configuration, improved access to affordable, high-resolution imagery is necessary to effectively monitor land cover dynamics at abandoned mines.  相似文献   
995.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
996.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
997.
Human population growth in coastal areas continues to threaten estuarine ecosystems and resources. Populations of Crassostrea virginica have declined across the USA due to water quality degradation, disease pressure, alteration of habitat, and other changes related to anthropogenic impacts. Metals that may be present in estuarine habitats can bioaccumulate in oysters, with potential consequences to the health of oysters and humans consumers. This study (1) evaluated the occurrence and relationships of metal concentrations in oyster tissue versus estuarine sediments, (2) examined oyster tissue concentrations in relation to state water quality designations, and (3) evaluated the potential risk for humans from oyster consumption related to metal concentrations from harvestable waters. Results indicated metal concentrations in sediments and oysters along coastal South Carolina remain low compared to other areas and that concentrations in oyster tissue and adjacent sediments were not highly correlated with each other. However, high concentrations of some metals occurred in oysters sampled from areas designated as Approved for Harvesting. This is important because most harvest area designation systems rely on regular bacterial monitoring when evaluating the safety of consumption. Others safety measurements may be necessary as part of routine monitoring.  相似文献   
998.
Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.  相似文献   
999.
In order to document the impact of Best Available Techniques (BAT) and implementation of regulation on the improvement of the coastal marine environment state, we examined the case of a representative steel mill located at the Gulf of Elefsis (Greece). The evaluation of metal pollution was based on the analysis of major and trace elements, organic carbon, magnetic properties, and sediment accumulation rates, in sediment cores obtained from the vicinity of the plant. The analytical data are discussed in relation to steel production, changes of production routes, and adoption of BAT introduced in order to fulfill EU and national legislation. The results show that the input of pollutants to sediments and the degree of contamination were reduced by approximately 40–70% in the decade 2003–2015 in comparison to the periods of high discharges (1963–2002), whereas the toxicity risks from “high-to-extremely high” were reduced to “medium-to-high.”  相似文献   
1000.
The temporal and spatial trends in the variability of PM10 and PM2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM10 and PM2.5 have ranges (averages) of 133–45 μg m?3 (84 μg m?3) and 35–16 μg m?3 (26 μg m?3) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM2.5 value is approximately 40% of the PM10 value. This proportion can be explained by PM10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM10 concentrations on the order of ?4.3 and ?5.3% year?1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM10 and PM2.5, respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号