首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   5篇
  国内免费   2篇
安全科学   27篇
废物处理   11篇
环保管理   62篇
综合类   35篇
基础理论   57篇
环境理论   1篇
污染及防治   121篇
评价与监测   20篇
社会与环境   10篇
灾害及防治   2篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   13篇
  2015年   9篇
  2014年   3篇
  2013年   31篇
  2012年   21篇
  2011年   23篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   14篇
  2006年   24篇
  2005年   14篇
  2004年   37篇
  2003年   17篇
  2002年   10篇
  2001年   9篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   6篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有346条查询结果,搜索用时 406 毫秒
71.
This research extends recent studies of the relationship between characteristics of jobs and patterns of workers' alcohol consumption. Working within a ‘generalization perspective ’whereby job conditions are seen as having important effects on the mental health and behaviors of workers in non-work settings, the current research derives and tests a model of four job-related factors as they influence three aspects of alcohol use; the simple frequency—quantity of drinking, escapist-oriented reasons for drinking, and a combination of heavier drinking with escapist-oriented definitions which is labeled ‘self-medication’. Analyses of data drawn from the 1973 Quality of Employment Survey (QES) indicate that the relationship between jobs and drinking behavior is more complex than previously conceptualized. Specifically, we find evidence that for working men characteristics of jobs affect levels of alcohol consumption and the incidence of self-medicating drinking. These findings support and refine job-based explanations of drinking behavior. The implications of these findings for subsequent research and model-specification are discussed.  相似文献   
72.
引言 北极已成为对当前气候波动和预计的全球变暖增强的影响进行评估的重要地区.原因有以下几个方面:①在过去几十年中北极经历了大幅度的变暖过程(温度平均升高3℃,而在许多地区温度升高了4~5℃);②气候预测表明气候呈现持续变暖趋势,在2080年之前年平均气温升高4~5℃;③近期的气候变暖正在影响北极的环境和经济,这些影响还会加大,并对生活方式、文化及生态系统造成影响;④北极的变化可能会影响到地球上的其它地区.  相似文献   
73.
北极生态系统的生物和物理过程会在不同的时间、空间尺度上对地球生态系统产生反馈作用,并与之相互影响.气候变化对北极地区的影响及其对全球气候系统的反馈主要存在着四种潜在机制反照率改变、生态系统对温室气体的排放或吸收、甲烷类温室气体的排放、影响海洋暖流淡水量的增长.这些反馈机制在某种程度上是由生态系统的分布和特征,尤其是大规模植被区域变化来控制的.通过少量全年的CO2通量测量表明,目前在地理分布上碳源区要比碳汇区要多.根据目前现有的关于CH4排放源地信息表明,景观规模上的CH4排放量对北极地区的温室效应平衡至关重要.北极地区的能量和水量平衡在变化的气候下,也是一个很重要的反馈机制.植被密度以及分布范围的增加会导致反射率的下降,因而会使地表吸收更多的能量.其效果可能会抵消由于极地沙漠地带向极地苔原带的的转化,或极地苔原带向极地森林带的转化,而造成的植被总净初级生产力碳沉降能力的提高而引起的负反馈.永久冻土带的退化对示踪气体动力学有着很复杂的影响.在不连续的永久冻土带地区,升温将会导致其完全消失.依赖于当地水文条件,温室气体排放可能由于气候环境变的干燥或湿润而使得其通量有所变化.总的来说,影响反馈的各种过程复杂的相互作用,以及这些过程随着时间地点的变化,加之数据的缺乏,又会在陆地生态系统气候变化对气候系统产生反馈作用的净效应估计上,产生许多的不确定性,这种不确定性将会影响到一些反馈的大小和方向.  相似文献   
74.
The defining feature of the life cycle in monogonont rotifers such as Brachionus plicatilis (Muller) is alternation of asexual and sexual reproduction (mixis). Why sex is maintained in such life cycles is an important unsolved evolutionary question and one especially amenable to experimental analysis. Mixis is induced by a chemical signal produced by the rotifers which accumulates to threshold levels at high population densities. The chemical features of this signal were characterized using size exclusion, enzymatic degradation, protease protection assays, selective binding to anion ion exchange and C3 reversed phase HPLC columns, and the sequence of 17 N-terminal amino acids. These studies were carried out over two years beginning in 2003 using B. plicatilis Russian strain. When rotifer-conditioned medium was treated with proteinase K, its mixis-inducing ability was reduced by 70%. Proteinase K was added to medium auto-conditioned by 1 female ml−1 where typically 17% of daughters became mictic and mixis was reduced to 1%. A cocktail of protease inhibitors added to conditioned medium significantly reduced degradation of the mixis signal by natural proteases. Conditioned medium subjected to ultrafiltration retained mixis-inducing activity in the >10 kDa fraction, but the <10 kDa fraction had no significant activity. The putative mixis signal bound to an anion exchange column, eluting off at 0.72 M NaCl. These fractions were further separated on a C3 reversed phase HPLC column and mixis-inducing activity was associated with a 39 kDa protein. Seventeen amino acids from the N-terminus have strong similarity to a steroidogenesis-inducing protein isolated from human ovarian follicular fluid. The 39 kDa protein is an excellent candidate for the rotifer mixis induction signal.  相似文献   
75.
Oxygen consumption of the saltmarsh isopod Sphaeroma rugicauda (Leach) was measured on 10 occasions during 1973. It was found that the metabolism depended upon both body size and exposure temperature. For most of the year, slope values relating oxygen consumption with size were between 0.5 and 0.9, but during August they were greater than 1.0. Within the environmental temperature range the R-T curve was strictly temperature-dependent, but during the summer there was a translation and rotation of the upper part of the curve to the right. A plateau of temperature-independent metabolism occurred between 30° and 35°C, which are temperatures approaching the critical maximum for the species. Thermal acclimation for 7 days at 20°C resulted in an extended plateau of temperature-independent metabolism between 15° and 35°C.  相似文献   
76.
Ye ZH  Lin ZQ  Whiting SN  de Souza MP  Terry N 《Chemosphere》2003,52(9):1571-1579
Wetland microcosms were used to evaluate the ability of constructed wetlands to remove extremely high concentrations of selenocyanate (SeCN-), arsenic (As), and boron (B) from wastewater generated by a coal gasification plant in Indiana. The wetland microcosms significantly reduced the concentrations of selenium (Se), As, B, and cyanide (CN) in the wastewater by 64%, 47%, 31%, and 30%, respectively. In terms of the mass of each contaminant, 79%, 67%, 57%, and 54% of the Se, As, B, and CN, respectively, loaded into the microcosms were removed from the wastewater. The primary sink for the retention of contaminants within the microcosms was the sediment, which accounted for 63%, 51%, and 36% of the Se, As, and B, respectively. Accumulation in plant tissues accounted for only 2-4%, while 3% of the Se was removed by biological volatilization to the atmosphere. Of the 14 plant species tested, cattail, Thalia, and rabbitfoot grass were highly tolerant of the contaminants and exhibited no growth retardation. Environmental toxicity testing with fathead minnow (Pimephales promelas) larvae confirmed that the water treated by the wetland microcosms was less toxic than untreated water. The data from the wetland microcosms support the view that constructed wetlands could be used to successfully reduce the toxicity of aqueous effluent contaminated with extremely high concentrations of SeCN-, As, and B, and that a pilot-scale wetland should therefore be constructed to test this in the field. Cattail, Thalia, and rabbitfoot grass would be suitable plant species to establish in such wetlands.  相似文献   
77.
One-year-old cherry trees were fumigated with propene and gas-phase hydrogen peroxide, singly and in combination, in controlled-environment chambers for an 8-week period during the summer season. A UV light source was included with the combined propene and hydrogen peroxide regime to provide a source of hydroxyl radicals and ozone, and thus all the constituents of a photochemical smog. Measurements were made of soluble protein concentration and of glutathione reductase activity in leaf extracts from two or three leaf classes in plants from each treatment regime at the end of each fumigation period. Significant increases in soluble protein concentration with respect to the controls were found in plants fumigated with propene and hydrogen peroxide. The occurrence and extent of these differences depended on the leaf class and on the timing of the fumigation period over the summer with respect to bud break. The activity of glutathione reductase was found to be significantly increased in mature lower leaves of plants which had been fumigated with hydrogen peroxide. This effect was independent of the timing of fumigation with respect to bud break. Enzyme activity was also increased in propene and in propene plus hydrogen peroxide treatments, but only when plants were fumigated early in the growth season.  相似文献   
78.
Variable levels of halogenated aromatic hydrocarbons were measured in clams (Laternula elliptica) collected from McMurdo Sound, Antarctica. Clams collected in and near Winter Quarters Bay contained high levels of organochlorine compounds, particularly polychlorinated biphenyls (PCBs). A strong gradient has been documented in Winter Quarters Bay that been linked to human activities at McMurdo Station. The activity of clam extracts as inducers of P4501A1-dependent ethoxyresorufin O-deethylase (EROD) activity was determined using in vitro bioassays utilizing rat hepatoma H4IIE cells. The extracts which exhibited the highest induction activities were those derived from clams collected in contaminated areas. Additionally, there was an excellent linear correlation between induced EROD activity versus total PCB levels (r2=0.96). The complimentary nature of both the analytical and bioanalytical data confirms the utility of the latter assay and provides a method for estimating the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalents in extracts from marine biota.  相似文献   
79.
Vapor pressures of six chlorinated phenols were measured by capillary gas chromatography using a 1.0-m BP-1 bonded phase column. GC-determined vapor pressures (PGC) were correlated with known liquid-phase vapor pressures (PL) by the equation: Log PGC = 1.026 Log PL — 0.132, r2 = 0.975 (vapor pressures in pascals). This relationship was used to estimate PL for chloroguaiacols, chloroveratroles, and 4-nonylphenol from their experimental PGC.  相似文献   
80.
Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号