首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15095篇
  免费   583篇
  国内免费   5619篇
安全科学   941篇
废物处理   971篇
环保管理   1186篇
综合类   8337篇
基础理论   2705篇
环境理论   2篇
污染及防治   5428篇
评价与监测   575篇
社会与环境   500篇
灾害及防治   652篇
  2024年   4篇
  2023年   230篇
  2022年   706篇
  2021年   573篇
  2020年   434篇
  2019年   445篇
  2018年   546篇
  2017年   694篇
  2016年   711篇
  2015年   881篇
  2014年   1174篇
  2013年   1649篇
  2012年   1302篇
  2011年   1366篇
  2010年   991篇
  2009年   990篇
  2008年   1035篇
  2007年   941篇
  2006年   834篇
  2005年   610篇
  2004年   426篇
  2003年   556篇
  2002年   489篇
  2001年   413篇
  2000年   437篇
  1999年   479篇
  1998年   424篇
  1997年   355篇
  1996年   339篇
  1995年   286篇
  1994年   235篇
  1993年   189篇
  1992年   152篇
  1991年   89篇
  1990年   69篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
981.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   
982.
• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes. • The morphologic and phylogenetic diversity of MTB were summarized. • Isolation and mass cultivation of MTB deserve extensive research for applications. • MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater. Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.  相似文献   
983.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. • Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   
984.
• Impact of urban development on water system is assessed with carrying capacity. • Impacts on both water resource quantity and environmental quality are involved. • Multi-objective optimization revealing system trade-off facilitate the regulation. • Efficiency, scale and structure of urban development are regulated in two stages. • A roadmap approaching more sustainable development is provided for the case city. Environmental impact assessments and subsequent regulation measures of urban development plans are critical to human progress toward sustainability, since these plans set the scale and structure targets of future socioeconomic development. A three-step methodology for assessing and optimizing an urban development plan focusing on its impacts on the water system was developed. The methodology first predicted the pressure on the water system caused by implementation of the plan under distinct scenarios, then compared the pressure with the carrying capacity threshold to verify the system status; finally, a multi-objective optimization method was used to propose regulation solutions. The methodology enabled evaluation of the water system carrying state, taking socioeconomic development uncertainties into account, and multiple sets of improvement measures under different decisionmaker preferences were generated. The methodology was applied in the case of Zhoushan city in South-east China. The assessment results showed that overloading problems occurred in 11 out of the 13 zones in Zhoushan, with the potential pressure varying from 1.1 to 18.3 times the carrying capacity. As a basic regulation measure, an environmental efficiency upgrade could relieve the overloading in 4 zones and reduce 9%‒63% of the pressure. The optimization of industrial development showed that the pressure could be controlled under the carrying capacity threshold if the planned scale was reduced by 24% and the industrial structure was transformed. Various regulation schemes including a more suitable scale and structure with necessary efficiency standards are provided for decisionmakers that can help the case city approach a more sustainable development pattern.  相似文献   
985.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   
986.
• Physical and chemical properties and application of peracetic acid solution. • Determination method of high concentration peracetic acid. • Determination method of residual peracetic acid (low concentration). Peroxyacetic acid has been widely used in food, medical, and synthetic chemical fields for the past several decades. Recently, peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water. However, commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid, acetic acid, hydrogen peroxide, and water. During the process of water treatment, peroxyacetic acid and hydrogen peroxide (H2O2) often coexist, which limits further investigation on the properties of peroxyacetic acid. Therefore, analytical methods need to achieve a certain level of selectivity, particularly when peroxyacetic acid and hydrogen peroxide coexist. This review summarizes the measurement and detection methods of peroxyacetic acid, comparing the principle, adaptability, and relative merits of these methods.  相似文献   
987.
• Nanowire-assisted LEEFT is applied for water disinfection with low voltages. • LEEFT inactivates bacteria by disrupting cell membrane through electroporation. • Multiple electrodes and device configurations have been developed for LEEFT. • The LEEFT is low-cost, highly efficient, and produces no DBPs. • The LEEFT can potentially be applicable for water disinfection at all scales. Water disinfection is a critical step in water and wastewater treatment. The most widely used chlorination suffers from the formation of carcinogenic disinfection by-products (DBPs) while alternative methods (e.g., UV, O3, and membrane filtration) are limited by microbial regrowth, no residual disinfectant, and high operation cost. Here, a nanowire-enabled disinfection method, locally enhanced electric field treatment (LEEFT), is introduced with advantages of no chemical addition, no DBP formation, low energy consumption, and efficient microbial inactivation. Attributed to the lightning rod effect, the electric field near the tip area of the nanowires on the electrode is significantly enhanced to inactivate microbes, even though a small external voltage (usually<5 V) is applied. In this review, after emphasizing the significance of water disinfection, the theory of the LEEFT is explained. Subsequently, the recent development of the LEEFT technology on electrode materials and device configurations are summarized. The disinfection performance is analyzed, with respect to the operating parameters, universality against different microorganisms, electrode durability, and energy consumption. The studies on the inactivation mechanisms during the LEEFT are also reviewed. Lastly, the challenges and future research of LEEFT disinfection are discussed.  相似文献   
988.
• Selective molecularly imprinted polymer (MIP) binding gel was prepared. • MIP-DGT showed excellent uptake performance for antibiotics. • In situ measurement of antibiotics in wastewaters via MIP-DGT was developed. • The MIP-DGT method was robust, reliable, and highly sensitive. Urban wastewater is one of main sources for the introduction of antibiotics into the environment. Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics discharged into the environment through urban wastewater treatment systems. In this study, we report a novel diffusive gradient in thin films (DGT) method based on molecularly imprinted polymers (MIPs) for in situ measurement of two typical antibiotics, fluoroquinolones (FQs) and sulfonamides (SAs) in urban wastewater. MIPs show specific adsorption toward their templates and their structural analogs, resulting in the selective uptake of the two target antibiotics during MIP-DGT deployment. The uptake performance of the MIP-DGTs was evaluated in the laboratory and was relatively independent of solution pH (4.0–9.0), ionic strength (1–750 mmol/L), and dissolved organic matter (DOM, 0–20 mg/L). MIP-DGT samplers were tested in the effluent of an urban wastewater treatment plant for field trials, where three SA (sulfamethoxazole, sulfapyridine, and trimethoprim) and one FQ (ofloxacin) antibiotics were detected, with concentrations ranging from 25.50 to 117.58 ng/L, which are consistent with the results measured by grab sampling. The total removal efficiency of the antibiotics was 80.1% by the treatment plant. This study demonstrates that MIP-DGT is an effective tool for in situ monitoring of trace antibiotics in complex urban wastewaters.  相似文献   
989.
• The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.  相似文献   
990.
• PAM degradation in thermophilic AD in comparison with mesophilic AD. • PAM degradation and its impact on thermophilic and mesophilic AD. • Enhanced methane yield in presence of PAM during thermophilic and mesophilic AD. • PAM degradation and microbial community analysis in thermophilic and mesophilic AD. Polyacrylamide (PAM) is generally employed in wastewater treatment processes such as sludge dewatering and therefore exists in the sludge. Furthermore, it degrades slowly and can deteriorate methane yield during anaerobic digestion (AD). The impact or fate of PAM in AD under thermophilic conditions is still unclear. This study mainly focuses on PAM degradation and enhanced methane production from PAM-added sludge during 15 days of thermophilic (55°C) AD compared to mesophilic (35°C) AD. Sludge and PAM dose from 10 to 50 g/kg TSS were used. The results showed that PAM degraded by 76% to 78% with acrylamide (AM) content of 0.2 to 3.3 mg/L in thermophilic AD. However, it degraded only 27% to 30% with AM content of 0.5 to 7.2 mg/L in mesophilic AD. The methane yield was almost 230 to 238.4 mL/g VSS on the 8th day in thermophilic AD but was 115.2 to 128.6 mL/g VSS in mesophilic AD. Mechanism investigation revealed that thermophilic AD with continuous stirring not only enhanced PAM degradation but also boosted the organics release from the sludge with added PAM and gave higher methane yield than mesophilic AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号