With a growing awareness of environmental protection, the dust pollution caused by automobile foundry work has become a serious and urgent problem. This study aimed to explore contamination levels and health effects of automobile foundry dust. A total of 276 dust samples from six types of work in an automobile foundry factory were collected and analysed using the filter membrane method. Probabilistic risk assessment model was developed for evaluating the health risk of foundry dust on workers. The health risk and its influencing factors among workers were then assessed by applying the Monte Carlo method to identify the most significant parameters. Health damage assessment was conducted to translate health risk into disability-adjusted life year (DALY). The results revealed that the mean concentration of dust on six types of work ranged from 1.67 to 5.40 mg/m3. The highest health risks to be come from melting, cast shakeout and finishing, followed by pouring, sand preparation, moulding and core-making. The probability of the risk exceeding 10−6 was approximately 85%, 90%, 90%, 75%, 70% and 45%, respectively. The sensitivity analysis indicated that average time, exposure duration, inhalation rate and dust concentration (C) made great contribution to dust health risk. Workers exposed to cast shakeout and finishing had the largest DALY of 48.64a. These results can further help managers to fully understand the dust risks on various types of work in the automobile foundry factories and provide scientific basis for the management and decision-making related to health damage assessment.
Management activities such as law enforcement and community outreach are thought to affect conservation outcomes in protected areas, but their importance relative to intrinsic environmental characteristics of the parks and extrinsic human pressures surrounding the parks have not been explored. Furthermore, it is not clear which is more related to conservation outcomes—the management itself or local people's perceptions of the management. We measured objective (reports by park staff) and subjective (reports by local people) levels of community outreach and law enforcement based on responses to 374 questionnaires. We estimated mammal abundance and diversity of 6 protected areas based on data from 115 camera traps in Xishuangbanna, southwest China, a biodiversity hotspot with high hunting and land-conversion pressures. We then examined correlations among them and found that local people's perception of law enforcement was positively related to the local abundance of 2 large, hunted species, wild boar (Sus scrofa) (β = 15.22) and muntjac (Muntiacus vaginalis) (β = 14.82), but not related to the abundance of smaller mammals or to objective levels of enforcement. The subjective frequency of outreach by park staff to local communities (β = 3.42) and park size (β = 3.28) were significantly and positively related to mammal species richness, whereas elevation, human population density, and subjective frequency of law enforcement were not. We could not conclude that community outreach and law enforcement were directly causing increased mammal abundance and diversity. Nevertheless, the patterns we detected are some of the first empirical evidence consistent with the idea that biodiversity in protected areas may be more positively and strongly related to local perceptions of the intensity of park management than to either intrinsic (e.g., elevation, park size) or extrinsic (e.g., human population density) environmental factors. 相似文献
UV can induce damages on mRNA consistently among different genes.SOS response was more active after UV treatment.Programmed cell death was not found to be more active after UV treatment. The efficacy of ultraviolet (UV) disinfection has been analyzed and validated by numerous studies using culture-based methods, yet the discovery of the viable but nonculturable state necessitates the investigation of UV disinfection based on viability parameters. Paired regulators of the SOS response system, recA-lexA, and the programmed cell death system, mazEF, in Escherichia coli were chosen as the target genes, and the effect of UV irradiation on the mRNAs of the four genes was studied. This research showed that, after UV irradiation, the responses of the mRNAs were highly consistent, with reduction percentages of approximately 60% at 20 mJ/cm2, 70% at 40 mJ/cm2, and 90% at 80 mJ/cm2, and these reductions were believed to be the result of direct UV damage to nucleic acids. After 24 h of dark incubation, recA and lexA were both upregulated but to a lesser extent for repressor lexA; and mazE and mazF were both downregulated. This result implies that UV irradiation induces the dark repair system more actively, and the cells will proceed to death at a rate similar to that associated with natural decay. 相似文献
Resin adsorption and subsequent electrodeposition were used for nickel recovery.Treated wastewater can meet the Electroplating Pollutant Discharge Standard.The spent resin is completely regenerated by 3 BV of 4% HCl solution.95.6% of nickel in concentrated eluent was recovered by electrodeposition. Effective recovery of high-value heavy metals from electroplating wastewater is of great significance, but recovering nickel ions from real electroplating wastewater as nickel sheet has not been reported. In this study, the pilot-scale fixed-bed resin adsorption was conducted to recover Ni(II) ions from real nickel plating wastewater, and then the concentrated Ni(II) ions in the regenerated solution were reduced to nickel sheet via electrodeposition. A commercial cation-exchange resin was selected and the optimal resin adsorption and regeneration conditions were investigated. The resin exhibited an adsorption capacity of 63 mg/g for Ni(II) ions, and the average amount of treated water was 84.6 bed volumes (BV) in the pilot-scale experiments. After the adsorption by two ion-exchange resin columns in series and one chelating resin column, the concentrations of Ni(II) in the treated wastewater were below 0.1 mg/L. After the regeneration of the spent resin using 3 BV of 4% (w/w) HCl solution, 1.5 BV of concentrated neutral nickel solution (>30 g/L) was obtained and used in the subsequent electrodeposition process. Using the aeration method, alkali and water required in resin activation process were greatly reduced to 2 BV and 3 BV, respectively. Under the optimal electrodeposition conditions, 95.6% of Ni(II) in desorption eluent could be recovered as the elemental nickel on the cathode. The total treatment cost for the resin adsorption and regeneration as well as the electrodeposition was calculated. 相似文献
A novel SBM-C-PBR was constructed for microalgae cultivation.Membrane fouling was greatly mitigated by membrane carbonation.NH4+ and P removal rates were around 80% in SBM-C-PBR.Biomass was completely retained by membrane. In this study, a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation. Herein, membrane module was endowed functions as microalgae retention and CO2 carbonation. The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm, photosynthetically active radiation was 36 W/m2 and the CO2 concentration was 10% (v/v). In long-term cultivation, the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods. The concentrations of chlorophyll a, chlorophyll b and carotenoids were increased about 23.2, 14.9 and 6.3 mg/L respectively in period I; meanwhile, the accumulation was about 25.0, 14.5, 6.6 mg/L respectively in the period II. Furthermore, the pH was kept about 5.5–7.5 due to intermittent carbonation mode, which was suitable for the growth of microalgae. Transmembrane pressure (TMP) was only increased by 0.19 and 0.16 bar in the end of periods I and II, respectively. The pure flux recovered to 75%–80% of the original value by only hydraulic cleaning. Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly. 相似文献
Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h?1 on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha?1. 相似文献
Water eutrophication in subtropical regions of southern China threatens watershed health and is of major concern. However, annual phosphorus (P) loading and its dominant causes are still unclear, especially at the watershed scale. In this study, we investigated dynamic P loadings and associated factors (e.g., land use, livestock production, and runoff depth) in ten watersheds that varied in area from 9 to 5,212 ha in a hilly area of Hunan Province, China. A flowmeter was installed at the outlet of each watershed, and total P (TP) and soluble P (SP) concentrations were monitored periodically from June 2010 to October 2012. The results showed that annual P loadings (APLs) in the ten watersheds ranged from 22.8 to 247.8 kg P/km2 and that P loss primarily occurred from April to June of each year during the main rainfall season in the study area. In addition, the average eutrophication (>0.05 mg P/L) ratio for stream waters was 86.7 % during the study period, which was indicative of a potentially serious condition for the local water environments. Annual P loadings were linearly related to livestock density (LD; R?=?0.92, p?<?0.01), whereas the eutrophication ratio of stream water was significantly (p?<?0.05) correlated with LD (R?=?0.61), percentage cropland (R?=?0.71), and percentage forest cover (R?=??0.68). Thus, it is concluded that the control of livestock production has the greatest potential for reducing P loadings in watersheds in this subtropical area. This will be beneficial to the amelioration and protection of local environment. 相似文献
Lake Taihu is a large shallow freshwater lake (surface area 2,338 km2, mean depth 1.9 m) in China, which has experienced toxic cyanobacterial bloom dominated by Microcystis annually during the last few decades. In the present study, the dynamics of toxic and nontoxic Microcystis in three sampling stations (Meiliang Bay (site N2), Gonghu Bay (site N4), and the lake center area (site S4)) were quantified using quantitative real-time PCR (qPCR) during bloom periods from April to September, 2010. Our data showed that the abundance of toxic Microcystis and the toxic proportion gradually increased from April to August in water samples and reached the peak in August. During the study period, toxic Microcystis genotypes comprised between 26.2 and 64.3, between 4.4 and 22.1, and between 10.4 and 20.6 % of the total Microcystis populations in the three sampling sites, respectively. Correlation analysis suggested that there was a strong positive relationship between total Microcystis, toxic Microcystis and the toxic proportion. Chlorophyll a, total phosphorus, and water temperature were positively correlated with the abundances of total Microcystis and toxic Microcystis. Furthermore, the toxic proportion was positively correlated with total phosphorus (P?<?0.05) and water temperature (P?<?0.01), showing that global warming together with eutrophication could promote more frequent toxic blooms. 相似文献