首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   12篇
环保管理   1篇
综合类   7篇
基础理论   9篇
环境理论   1篇
污染及防治   25篇
评价与监测   3篇
社会与环境   12篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   3篇
  2009年   9篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
21.
In this study, a method for removing water from biosolids that uses dimethyl ether (DME) as an extractant was considered. This study evaluates the applicability of the DME dewatering method to biosolid cakes by using a DME flow-type experimental apparatus. It was found that a high dewatering ratio is clearly achieved by increasing the liquefied DME/biosolid ratio and lowering the liquefied DME linear velocity. As the liquefied DME/biosolid ratio was increased, the carbon content in dewatered biosolid showed a slight decrease and the TOC concentration in separated liquid increased significantly. Finally, the input energy Es to remove 1 kg of water from the biosolid cake, using both the DME dewatering method and the conventional drying method was estimated. The calculation shows that Es for the DME dewatering process is approximately a third of Es for the conventional thermal drying process.  相似文献   
22.
Sun Y  Takaoka M  Takeda N  Wang W  Zeng X  Zhu T 《Chemosphere》2012,88(7):895-902
An activated carbon (AC) containing a high concentration (374 mg g−1) of Fe was prepared by carbonization of an ion-exchange resin. To examine its chemical reactivity as a catalyst to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153), the decomposition parameters of temperature and time were varied under air or N2. Decomposition at 350 °C was achieved within 15 min under air and 30 min under N2, and the efficiency of PCB-153 decomposition was 99.7% and 98.0%, respectively. An analysis of inorganic chloride ions revealed that PCB-153 was mineralized effectively during the decomposition. The Brunauer-Emmett-Teller (BET) surface area and pore volume of the AC were measured to assess the adsorption capacity before and after the decomposition. The differences between decomposition under air and N2 reflected the differences in the BET surface and pore volume measurements. A decomposition pathway was postulated, and the reactive characteristics of chlorine atoms loaded on the benzene rings followed the order of para meta ortho, which agrees with the calculated results from a density functional theory study.  相似文献   
23.
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.  相似文献   
24.
To obtain reliable diffusion parameters for diffusion testing, multiple experiments should not only be cross-checked but the internal consistency of each experiment should also be verified. In the through- and in-diffusion tests with solution reservoirs, test interpretation of different phases often makes use of simplified analytical solutions. This study explores the feasibility of steady, quasi-steady, equilibrium and transient-state analyses using simplified analytical solutions with respect to (i) valid conditions for each analytical solution, (ii) potential error, and (iii) experimental time. For increased generality, a series of numerical analyses are performed using unified dimensionless parameters and the results are all related to dimensionless reservoir volume (DRV) which includes only the sorptive parameter as an unknown. This means the above factors can be investigated on the basis of the sorption properties of the testing material and/or tracer. The main findings are that steady, quasi-steady and equilibrium-state analyses are applicable when the tracer is not highly sorptive. However, quasi-steady and equilibrium-state analyses become inefficient or impractical compared to steady state analysis when the tracer is non-sorbing and material porosity is significantly low. Systematic and comprehensive reformulation of analytical models enables the comparison of experimental times between different test methods. The applicability and potential error of each test interpretation can also be studied. These can be applied in designing, performing, and interpreting diffusion experiments by deducing DRV from the available information for the target material and tracer, combined with the results of this study.  相似文献   
25.
Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.  相似文献   
26.
Molecular size as a limiting characteristic for bioconcentration in fish   总被引:1,自引:0,他引:1  
The relationships between the bioconcentration factor (BCF) of chemicals in fish and their size, as characterized by molecular weight (MW), effective cross sectional diameter (Deff), and maximum diameter (Dmax) have been investigated using an experimental data set of 737 new and 441 existing chemicals monitored by the Japanese Chemical Substances Control Law (CSCL). Substances with BCF > or = 5000 (very high bioconcentration potential) typically have MW < 550, Deff < 1.1 nm and Dmax < 2.0 nm, respectively and the substances with BCF > or = 1000 (high bioconcentration potential) have MW < 550, Deff < 1.4 nm and Dmax < 2.9 nm, respectively Therefore, the previously suggested threshold values for Deff (0.95 nm) and Dmax (1.5 nm) used for discriminating between bioconcentrative and non-bioconcentrative substances were found to be somewhat small. We found that many substances with BCF > or = 1000 and Dmax > or = 1.5 nm have Deff < 0.95 nm.  相似文献   
27.
The radionuclides (14)C and (3)H may both be released from nuclear facilities. These radionuclides are unusual, in that they are isotopes of macro-elements which form the basis of animal tissues, feed and, in the case of (3)H, water. There are few published values describing the transfer of (3)H and (14)C from feed to animal derived food products under steady state conditions. Approaches are described which enable the prediction of (14)C and (3)H transfer parameter values from readily available information on the stable H or C concentration of animal feeds, tissues and milk, water turnover rates, and feed intakes and digestibilities. We recommend that the concentration ratio between feed and animal product activity concentrations be used as it is less variable than the transfer coefficient (ratio between radionuclide activity concentration in animal milk or tissue to the daily intake of a radionuclide).  相似文献   
28.
After packing a compact of coal fly ash mixed with 3.5?M (mol/L) sodium hydroxide solution into a cylindrical plastic mold at 80?°C and 50?% relative humidity for 24?h, the plastic mold was released and the compact was immersed in 3.5?M sodium hydroxide solution at 80?°C for 48?h. When the resultant compact was removed from the solution and cured at 80?°C and 50?% relative humidity for 7?days, a bulk material with zeolite was formed. The strength of the resultant bulk material was a result of the formation of geopolymer (alkali-activated cement). The specific surface area and the compressive strength of the bulk body sample were 21.4?m2/g and 29.0?MPa, respectively. According to a quantitative analysis conducted using the X-ray diffraction (XRD) technique, the content of the formed Na-P type zeolite was estimated to be approximately 28.2?% in mass ratio. The pore size of the resultant bulk materials with zeolite ranges from sub-nanometer to several tens of nanometers, so the resultant bulk material with zeolite exhibited excellent water vapor retention characteristics.  相似文献   
29.
An atmospheric dispersion model, where the inputs of meteorological field were calculated using a meteorological model, was used to reproduce the observed air pollution conditions for the typical fine day in summer period, especially the concentration of the photochemical oxidants. As well, the effects of an increase in the urban temperature and VOC emissions on the concentration of photochemical oxidants were also considered. The following conclusions were drawn.The observed air pollution levels were well modeled by the atmospheric dispersion model using in this study, although modeled NO levels were slightly lower than the observed levels. An analysis of the temperature data showed that a 1 °C increase in temperature leads to a maximal photochemical oxidant concentration of 5.3 ppb, which is an increase of 11%. Additionally, the effect on the photochemical oxidant concentration due to an increase in the vegetation-derived VOCs was more than double the effect due to an increase in the photochemical reactions. It was found that the temperature and photochemical oxidant concentration were linearly related up to a temperature increase of 3 °C. When the temperature increases up to 3 °C, the concentration of photochemical oxidants increases by 19 ppb. An analysis of the effect of vegetation-derived VOCs on photochemical oxidant concentrations showed that, the concentration of photochemical oxidants was 30 ppb higher in the afternoon by the effect of vegetation-derived VOCs, so even in metropolitan areas with relatively little vegetation, vegetation-derived VOCs have a strong impact on photochemical oxidant concentrations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号