首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
  国内免费   19篇
安全科学   2篇
废物处理   1篇
环保管理   3篇
综合类   31篇
基础理论   1篇
污染及防治   1篇
评价与监测   4篇
社会与环境   1篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2001年   1篇
排序方式: 共有45条查询结果,搜索用时 312 毫秒
31.
文章选用2015-2018年天津市复康路站点的长期连续PM_(2.5)组分观测数据,分析了天津市的PM_(2.5)主要组分污染特征,并分析了WRF/NAQPMS模型对天津市不同季节的PM_(2.5)组分的模拟情况。研究发现天津市近年的PM_(2.5)及其主要组分浓度整体在逐年下降,与2015年相比,2018年PM_(2.5)、OM与EC分别下降了27%、30%与28%。Cl~-、F~-、NO_3~-、NO_2~-、SO_4~(2-)等均有较大降幅,2018年与2015年相比分别下降了51%、72%、28%、54%与48%,但Ca~(2+)、Mg~(2+)、K~+浓度均有所上升,升幅分别是177%、170%与76%。这些组分浓度的变化表明燃烧源等人为源排放控制较好,沙尘等影响在加大。大部分PM_(2.5)组分呈现冬季浓度最高,夏季浓度最低的季节变化规律,但Na~+与Ca~(2+)等离子在5-6月也出现了一个峰值,可能与沙尘或海风的影响相关;K+离子在2月出现峰值,可能与烟花或生物质燃烧有关;硝酸盐与铵盐在3月出现了另一个峰值,可能与农业活动有关。总体上数值模式对天津市PM_(2.5)及其主要组分模拟的结果比较理想,NAQPMS模式可以较好地模拟出NO_3~-、OM、NH_4~+、SO_4~(2-)等的变化趋势与浓度水平,但对EC高估了约2倍,这可能主要由于清单对EC排放的估算过高导致。  相似文献   
32.
天津市PM2.5污染特征与来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
李源  陈魁  孔君  毕温凯  白宇  徐虹  杨宁 《环境工程》2019,37(11):132-137
使用2013—2018年大范围长期连续PM_(2.5)观测数据分析了天津市PM_(2.5)污染特征,并使用SMOKE/WRF/NAQPMS模型研究了天津市不同季节PM_(2.5)来源情况。天津市近年PM_(2.5)浓度逐年下降,2013—2018年的年均浓度从96μg/m3下降到52μg/m3,均呈现冬季浓度最高,春、秋季较高,夏季最低的趋势;空间分布上呈西高东低、南高北低的分布特征。本地排放是天津市PM_(2.5)主要来源,不同季节占比为30%~40%,周边城市的跨省输送特征明显,沧州市的贡献约为10%,廊坊市的贡献在、秋冬季较大,为10%~14%,山东省在冬季以外的季节也有10%左右的PM_(2.5)贡献,国外及海洋的贡献在夏季较大(23%),但在其他季节的贡献较小。多数时期二次生成的PM_(2.5)贡献比例最大,贡献为30%~40%,说明天津所在的华北地区二次反应较强烈。另外,居民源与工业源的排放占比也较大,特别是冬季的居民源,占比高达42%。制定防治措施时可考虑不同季节的地区联防联控,但由于本地的排放占比均较大,在任何季节都应该强化本地排放的控制,控制重点是居民源与工业源。  相似文献   
33.
本实验目的是研究草木灰对吸附亚甲基蓝的去除效果,探讨了亚甲基蓝初始量、吸附时间、pH值等对吸附效果的影响,并运用伪一级、伪二级反应动力学模型和Laugmuir、Freundlich等温线模型进行拟合。结果表明,草木灰对亚甲基蓝溶液的吸附在5 min~30 min速率比较快,约在65 min内达到吸附平衡,pH越大越有利于吸附,浓度在5mg/L时草木灰对亚甲基蓝的吸附最佳。与伪二级动力学曲线模型拟合效果较好,由Laugmuir等温线模型计算得出理论最大吸附容量Qm为2.275 mg/g,吸附性能优异。  相似文献   
34.
为了解“十三五”期间天津市O3污染特征和驱动因素,基于2016~2020年高时空分辨率的在线监测数据,利用空间自相关、空间热点分析和STIRPAT模型分析了O3污染空间分布、聚集特征和驱动因子.结果表明,2016~2020年天津市O3浓度变化特征呈现污染发生时间点提前和污染范围扩大的趋势.6~10月O3污染分布具有显著聚集性,高值-高值聚集区主要为市内六区、北辰区、津南区和静海区,O3浓度在西南部地区形成高值热点聚集区,在东北部地区形成低值冷点聚集区.气温、小风百分率和日照时数等气象因子与NOx排放量、 VOCs排放量和机动车保有量等社会因子对O3浓度有显著性影响,综合驱动STIRPAT模型的回归拟合效果比单一气象因子或社会因子模型更好.为科学高效地开展“十四五”期间O3污染的防治,在关注气象条件基础上,在“双碳”目标的约束下,天津市应进一步提升钢铁、石化、火电和建材等行业全过程排放的绩效水平,引导企业清洁化提升...  相似文献   
35.
使用天津市2013—2017年的连续臭氧观测数据,分析了天津市的臭氧污染特征,并使用基于排放清单处理模型(SMOKE)/中尺度气象模型(WRF)/多尺度空气质量模型(CAMx)的臭氧来源解析技术对天津市不同季节的臭氧来源情况进行研究。结果表明,天津市臭氧污染整体波动变化,年均浓度总体呈现先下跌后上升的趋势;天津市臭氧夏季浓度较高,春季、秋季浓度较低,冬季浓度最低。天津市臭氧污染区域性特征明显,区域输送贡献远大于本地贡献,本地臭氧来源贡献率仅占8%~20%。河北省、山东省、内蒙古自治区等地区污染物排放对天津市臭氧污染有较大贡献。天津市本地源对臭氧的贡献季节差异较大,其中工业源贡献较大,其在春季、秋季对臭氧贡献率分别为49%、43%。夏季天然源、工业源、交通源与电厂源对臭氧贡献率较为接近,均在20%~30%;冬季其他源(包括生物质燃烧源、居民燃烧源等)对臭氧贡献率最大,为54%。未来应根据臭氧污染来源的地域特征和季节特征采取不同臭氧污染防治策略。  相似文献   
36.
本文利用环境空气质量和气象要素的小时观测数据,分析了天津一次典型大气重污染过程前后空气质量和主要气象因素的变化特征,研究了气象条件对环境空气质量的影响,结果表明:天津地区大气重污染过程呈现两种特征,一种是"逐渐积累、迅速清除",主要在污染过程的开始和结束时段呈现;另一种是"快速下降、快速回升",主要在污染过程中期,由于风向转变使污染物输送推移导致的。在污染物积累阶段,风速明显偏小,相对湿度增大;在污染过程结束阶段,风速明显偏大,风向多为西北风,相对湿度明显下降。分析了风速、相对湿度与PM2.5浓度的相关性,其中风速与PM2.5浓度呈指数相关,R2达到0.420,相对湿度与PM2.5浓度呈线性相关,R2达到0.520。  相似文献   
37.
第一代潜水式生态介质箱(装置组)能修复深层黑臭水体,但其对下层水体溶解氧的增加能力有限.本文在现有第一代生态介质箱的基础上增设水下深层化学增氧器并更换环境矿物基质,视为第二代生态介质箱(联合组),分别以未经任何处理的水样(空白组)、将沉水植物种植在底泥上(苦草组)作为对照,比较了联合组、装置组、苦草组修复黑臭水体的效果...  相似文献   
38.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   
39.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5...  相似文献   
40.
土壤微生物积极参与生态系统的物质循环和转化.人类活动造成全球氮沉降量激增,引起土壤微生物群落结构和功能的改变,进而导致生态系统失衡.2014年6月—2015年5月在缙云山柑橘林建立野外模拟氮沉降试验样地,原位设置4个施肥水平:对照(N0,0 g·m~(-2)·a~(-1))(以N计,下同)、低氮(N20,20 g·m~(-2)·a~(-1)),中氮(N4 0,40 g·m~(-2)·a~(-1))和高氮(N60,60 g·m~(-2)·a~(-1)).施氮处理2 d后,采用磷脂脂肪酸(PLFA)标记法和ACE(Automated Soil CO_2Exchange Station,UK)自动土壤呼吸监测系统对土壤微生物群落结构、土壤温湿度进行测定.研究表明:(1)不同季节土壤微生物对氮沉降的响应各异,春季氮沉降抑制土壤微生物量,夏、秋、冬季N40处理提高了土壤微生物量,N20、N60表现为抑制土壤微生物量;氮沉降对土壤温度有显著影响,但对土壤湿度影响不明显(p0.05).(2)土壤微生物丰富度指数和Shannon-Wiener多样性指数在中氮沉降条件下达最大;Pielou均匀度指数则表现不一致,春季和夏季在中氮浓度下最大,秋季在高氮处理下最大,冬季则在低氮处理下最大.(3)土壤温度与放线菌呈显著负相关(p0.01);土壤湿度与细菌和总PLFA呈显著正相关(p0.01),与放线菌呈显著正相关(p0.05).综合分析表明,土壤微生物受土壤温度和含水量的共同影响,氮沉降降低了土壤微生物含量,此研究结果支持了氮沉降抑制土壤微生物的认识.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号