首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   36篇
  国内免费   18篇
安全科学   36篇
废物处理   18篇
环保管理   88篇
综合类   106篇
基础理论   109篇
环境理论   2篇
污染及防治   123篇
评价与监测   30篇
社会与环境   28篇
灾害及防治   11篇
  2025年   1篇
  2024年   8篇
  2023年   17篇
  2022年   26篇
  2021年   24篇
  2020年   15篇
  2019年   22篇
  2018年   25篇
  2017年   22篇
  2016年   32篇
  2015年   24篇
  2014年   31篇
  2013年   45篇
  2012年   19篇
  2011年   33篇
  2010年   21篇
  2009年   20篇
  2008年   20篇
  2007年   15篇
  2006年   16篇
  2005年   12篇
  2004年   9篇
  2003年   14篇
  2002年   14篇
  2001年   14篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有551条查询结果,搜索用时 0 毫秒
461.
    
Cultural adaptation is one means by which conservationists may help populations adapt to threats. A learned behavior may protect an individual from a threat, and the behavior can be transmitted horizontally (within generations) and vertically (between generations), rapidly conferring population-level protection. Although possible in theory, it remains unclear whether such manipulations work in a conservation setting; what conditions are required for them to work; and how they might affect the evolutionary process. We examined models in which a population can adapt through both genetic and cultural mechanisms. Our work was motivated by the invasion of highly toxic cane toads (Rhinella marina) across northern Australia and the resultant declines of endangered northern quolls (Dasyurus hallucatus), which attack and are fatally poisoned by the toxic toads. We examined whether a novel management strategy in which wild quolls are trained to avoid toads can reduce extinction probability. We used a simulation model tailored to quoll life history. Within simulations, individuals were trained and a continuous evolving trait determined innate tendency to attack toads. We applied this model in a population viability setting. The strategy reduced extinction probability only when heritability of innate aversion was low (<20%) and when trained mothers trained >70% of their young to avoid toads. When these conditions were met, genetic adaptation was slower, but rapid cultural adaptation kept the population extant while genetic adaptation was completed. To gain insight into the evolutionary dynamics (in which we saw a transitory peak in cultural adaptation over time), we also developed a simple analytical model of evolutionary dynamics. This model showed that the strength of natural selection declined as the cultural transmission rate increased and that adaptation proceeded only when the rate of cultural transmission was below a critical value determined by the relative levels of protection conferred by genetic versus cultural mechanisms. Together, our models showed that cultural adaptation can play a powerful role in preventing extinction, but that rates of cultural transmission need to be high for this to occur.  相似文献   
462.
Kin selection has played an important role in the evolution and maintenance of cooperative breeding behaviour in many bird species. However, although relatedness has been shown to affect the investment decisions of helpers in such systems, less is known about the role that kin discrimination plays in other contexts, such as communal roosting. Individuals that roost communally benefit from reduced overnight heat loss, but the exact benefit derived depends on an individual's position in the roost which in turn is likely to be influenced by its position in its flock's dominance hierarchy. We studied the effects of kinship and other factors (sex, age, body size and flock sex ratio) on an individual's roosting position and dominance status in captive flocks of cooperatively breeding long-tailed tits Aegithalos caudatus. We found that overall, kinship had little influence on either variable tested; kinship had no effect on a bird's position in its flock's dominance hierarchy and the effect of kinship on roosting position was dependent on the bird's size. Males were generally dominant over females and birds were more likely to occupy preferred roosting positions if they were male, old and of high status. In this context, the effect of kinship on social interactions appears to be less important than the effects of other factors, possibly due to the complex kin structure of winter flocks compared to breeding groups.  相似文献   
463.
This paper formulates an input-output method for determining the distributional consequences of energy development projects. The method is oriented to the conditions appearing in many contemporary development settings where large resident populations and other factors are likely to inhibit boomtown scenarios. An analysis of geothermal energy development in Imperial County, California, is presented. The results indicate that personal income inequality is likely to increase by several percentage points as measured by the Gini coefficient. The sensitivity of the results is examined with respect to important factors such as labor supply elasticities, preferential employment of local residents, and the concentration of land holdings.  相似文献   
464.
    
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species’ range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species’ distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.  相似文献   
465.
The present paper addresses defining the extent of the mixing zones of effluents discharged into rivers, which is a problem that should be analyzed based on probabilistic terms, as it is governed by several random processes. A river’s flow regime is one of the main variables, and it has a high dependence on hydrological processes. Additionally, after calculating the extent of the mixing zone, it is necessary to determine if the resulting dimensions are admissible or not. Common practice includes the admissibility criteria associated with the geometry of the river. However, this practice does not consider the environmental characteristics of the river that make it capable of absorbing the impact of the effluent (the biological and hydromorphological status of the river and the presence of structures that can change the river flow conditions, ecologically sensitive area or threatened species). This paper presents work on two important topics: on the one hand, the development of a methodology to establish the admissible extent of the mixing zone as a function of the environmental vulnerability of the river to the discharged effluent and, on the other hand, the proposal of a procedure to perform the calculations of the effluent mixing considering the variability of the river’s flow regime. The proposed methodological approaches are illustrated with an application to a real case, including a numerical simulation of the hydrodynamic and effluent evolution of the river during a year, to test the proposed methodology’s suitability and demonstrate the important savings in computational effort that can be achieved.  相似文献   
466.
The degradation of selected chlorinated aliphatic hydrocarbons (CAHs) exemplified by trichloroethylene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contaminants. Hydroxyl radicals (·OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton’s reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new “time-squared” kinetic model, C = C o exp(?k obs t 2), was developed to express the degradation kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards ?OH. Chloride release was monitored to examine the degree of dechlorination during the oxidation of selected CAHs. TCE was more easily dechlorinated thanDCE and CF.Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermediates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton’s reagent was proposed.  相似文献   
467.
    
The prey naivety hypothesis posits that prey are vulnerable to introduced predators because many generations in slow gradual coevolution are needed for appropriate avoidance responses to develop. It predicts that prey will be more responsive to native than introduced predators and less responsive to introduced predators that differ substantially from native predators and from those newly established. To test these predictions, we conducted a global meta-analysis of studies that measured the wariness responses of small mammals to the scent of sympatric mammalian mesopredators. We identified 26 studies that met our selection criteria. These studies comprised 134 experiments reporting on the responses of 36 small mammal species to the scent of six introduced mesopredators and 12 native mesopredators. For each introduced mesopredator, we measured their phylogenetic and functional distance to local native mesopredators and the number of years sympatric with their prey. We used predator and prey body mass as a measure of predation risk. Globally, small mammals were similarly wary of the scent of native and introduced mesopredators; phylogenetic and functional distance between introduced mesopredators and closest native mesopredators had no effect on wariness; and wariness was unrelated to the number of prey generations, or years, since first contact with introduced mesopredators. Small mammal wariness was associated with predator-prey body mass ratio, regardless of the nativity. The one thing animals do not seem to recognize is whether their predators are native.  相似文献   
468.
         下载免费PDF全文
There is little appreciation of the level of extinction risk faced by one‐sixth of the over 65,000 species assessed by the International Union for Conservation of Nature. Determining the status of these data‐deficient (DD) species is essential to developing an accurate picture of global biodiversity and identifying potentially threatened DD species. To address this knowledge gap, we used predictive models incorporating species’ life history, geography, and threat information to predict the conservation status of DD terrestrial mammals. We constructed the models with 7 machine learning (ML) tools trained on species of known status. The resultant models showed very high species classification accuracy (up to 92%) and ability to correctly identify centers of threatened species richness. Applying the best model to DD species, we predicted 313 of 493 DD species (64%) to be at risk of extinction, which increases the estimated proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to contain large numbers of threatened DD species are already conservation priorities, but species in these areas show considerably higher levels of risk than previously recognized. We conclude that unless directly targeted for monitoring, species classified as DD are likely to go extinct without notice. Taking into account information on DD species may therefore help alleviate data gaps in biodiversity indicators and conserve poorly known biodiversity. Predección del Estado de Conservación de Especies con Deficiencia de Datos  相似文献   
469.
The relative scarcity of studies at the intersection of behavioral and population ecology is surprising given the presumed importance of behavior in density-dependent population regulation. Here we tested whether North American red squirrels (Tamiasciurus hudsonicus) adjust their behavior in response to local population density and whether they use rates of territorial vocalizations in their local neighborhood to assess density. We examined these relationships using 18?years of live trapping and 20?years of behavioral data that were collected across natural variation in local population density. To disentangle the effects of population density on behavior from those due to changes in per capita food abundance or changes in the frequency of antagonistic interactions with neighbors, we also experimentally manipulated population density with long-term food supplementation as well as perceived population density with long-term playbacks of territorial vocalizations. The frequency with which squirrels emitted territorial vocalizations was positively associated with local population density. In contrast, antagonistic physical interactions observed between squirrels and territorial intrusions were rare and the frequency of intrusions was weakly and negatively, not positively, associated with population density. Squirrels experiencing naturally and experimentally high density conditions spent less time in the nest and feeding but more time being vigilant. Similar density-dependent changes in behavior were observed in response to our manipulations of perceived population density, indicating that vocalization rates and not physical interactions or food abundance were the mechanism by which squirrels assessed and responded behaviorally to changes in local density.  相似文献   
470.
The location of an animal within a social group has important effects on feeding success. When animals consume quickly eaten food items, individuals located at the front edge of a group typically have greater foraging success. When groups feed at large clumped resources, dominant individuals can often monopolize the resource, leading to higher feeding success in the center of the group. In order to test these predictions, behavioral data relating foraging success to within-group spatial position were recorded from two habituated groups of ring-tailed coatis (Nasua nasua) in Iguazu, Argentina. Foraging success did not fit expected patterns. When feeding on small ground litter invertebrates, coatis had the same foraging success at all spatial positions. This pattern likely resulted from an abundance of invertebrates in the ground litter. When feeding on fruit, individuals in the front of the group had greater feeding success, which was driven by the relatively quick depletion of fruit trees. Dominant juveniles were often located in the front of the group which led to increased access to food. This resulted in higher feeding success on fruits but simultaneously increased their risk of predation. Although groups typically became more elongated and traveled faster when feeding on fruit, it did not appear that the coatis were drastically changing their spacing strategies when switching between the two food types. Paradoxically, spatial position preferences during invertebrate foraging appeared to be driven by fruit trees. Because fruit trees were encountered so frequently, juveniles ranging at the front edge of the group during invertebrate foraging were the first to arrive at fruit trees and thus had higher foraging success. This study demonstrates the importance of how food patch size and depletion rate affect the spatial preferences of individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号