首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3776篇
  免费   85篇
  国内免费   37篇
安全科学   183篇
废物处理   138篇
环保管理   942篇
综合类   364篇
基础理论   945篇
环境理论   3篇
污染及防治   914篇
评价与监测   237篇
社会与环境   148篇
灾害及防治   24篇
  2023年   43篇
  2022年   53篇
  2021年   42篇
  2020年   44篇
  2019年   65篇
  2018年   77篇
  2017年   87篇
  2016年   132篇
  2015年   83篇
  2014年   107篇
  2013年   376篇
  2012年   139篇
  2011年   238篇
  2010年   173篇
  2009年   175篇
  2008年   185篇
  2007年   201篇
  2006年   183篇
  2005年   109篇
  2004年   138篇
  2003年   135篇
  2002年   122篇
  2001年   75篇
  2000年   48篇
  1999年   47篇
  1998年   50篇
  1997年   52篇
  1996年   59篇
  1995年   58篇
  1994年   48篇
  1993年   45篇
  1992年   29篇
  1991年   31篇
  1990年   40篇
  1989年   25篇
  1988年   38篇
  1987年   28篇
  1986年   41篇
  1985年   23篇
  1984年   38篇
  1983年   32篇
  1982年   34篇
  1981年   32篇
  1980年   21篇
  1979年   20篇
  1978年   12篇
  1977年   10篇
  1976年   10篇
  1974年   8篇
  1972年   9篇
排序方式: 共有3898条查询结果,搜索用时 593 毫秒
101.
Multi-walled carbon nanotube(MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm.The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.  相似文献   
102.
Environmental Management - Tropical forest landscapes are undergoing rapid transition. Rural development aspirations are rising, and land use change is contributing to deforestation, degradation,...  相似文献   
103.
Spectral reflectance values of four canopy components (stems, buds, opening flowers, and postflowers of yellow starthistle (Centaurea solstitialis)) were measured to describe their spectral characteristics. We then physically combined these canopy components to simulate the flowering stage indicated by accumulated flower ratios (AFR) 10%, 40%, 70%, and 90%, respectively. Spectral dissimilarity and spectral angles were calculated to quantitatively identify spectral differences among canopy components and characteristic patterns of these flowering stages. This study demonstrated the ability of hyperspectral data to characterize canopy components, and identify different flowering stages. Stems had a typical spectral profile of green vegetation, which produced a spectral dissimilarity with three reproduction organs (buds, opening flowers, and postflowers). Quantitative differences between simulated flower stages depended on spectral regions and phenological stages examined. Using full-range canopy spectra, the initial flowering stage could be separated from the early peak, peak, and late flowering stages by three spectral regions, i.e. the blue absorption (around 480 nm) and red absorption (around 650 nm) regions and NIR plateau from 730 nm to 950 nm. For airborne CASI data, only the red absorption region and NIR plateau could be used to identify the flowering stages in the field. This study also revealed that the peak flowering stage was more easily recognized than any of the other three stages.  相似文献   
104.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
105.
The concept of storing radioactive waste in geological formations calls for large quantities of concrete that will be in contact with the clay material of the engineered barriers as well as with the geological formation. France, Switzerland and Belgium are studying the option of clayey geological formations. The clay and cement media have very contrasted chemistries that will interact and lead to a degradation of both types of material. The purpose of this review is to establish an exhaustive list of laboratory experiments so as to identify the reaction sequences in the evolution of both the clay minerals and accessory minerals during their alteration in an alkaline environment. We review the data on clay dissolution kinetics in this environment, and include an invaluable study of natural analogues that allow one to correlate the phenomena in time. The available data and experiments make it possible to construct predictive numerical models. However, as the quality of the data is inhomogeneous, we recommend a continuation of the thermodynamic and kinetic data acquisition. It is obvious that the numerical modeling of the alkaline disturbance will be more relevant if it can combine the advantages of the different detailed models: mineralogical completeness, combined modeling of the clay and cement media, evolution of the porosity, consideration of the pCO2 and all the surface reactions.  相似文献   
106.
River channel migration and cutoff events within large river riparian corridors create heterogeneous and biologically diverse landscapes. However, channel stabilization (riprap and levees) impede the formation and maintenance of riparian areas. These impacts can be mitigated by setting channel constraints away from the channel. Using a meander migration model to measure land affected, we examined the relationship between setback distance and riparian and off-channel aquatic habitat formation on a 28-km reach of the Sacramento River, California, USA. We simulated 100 years of channel migration and cutoff events using 11 setback scenarios: 1 with existing riprap and 10 assuming setback constraints from about 0.5 to 4 bankfull channel widths (bankfull width: 235 m) from the channel. The percentage of land reworked by the river in 100 years relative to current (riprap) conditions ranged from 172% for the 100-m constraint setback scenario to 790% for the 800-m scenario. Three basic patterns occur as the setback distance increases due to different migration and cutoff dynamics: complete restriction of cutoffs, partial restriction of cutoffs, and no restriction of cutoffs. Complete cutoff restriction occurred at distances less than about one bankfull channel width (235 m), and no cutoff restriction occurred at distances greater than about three bankfull widths (∼700 m). Managing for point bars alone allows the setbacks to be narrower than managing for cutoffs and aquatic habitat. Results suggest that site-specific “restriction of cutoff” thresholds can be identified to optimize habitat benefits versus cost of acquired land along rivers affected by migration processes.  相似文献   
107.
Recent adoption of national rules for organic crop production have stimulated greater interest in meeting crop N needs using manures, composts, and other organic materials. This study was designed to provide data to support Extension recommendations for organic amendments. Specifically, our objectives were to (i) measure decomposition and N released from fresh and composted amendments and (ii) evaluate the performance of the model DECOMPOSITION, a relatively simple N mineralization/immobilization model, as a predictor of N availability. Amendment samples were aerobically incubated in moist soil in the laboratory at 22 degrees C for 70 d to determine decomposition and plant-available nitrogen (PAN) (n = 44), and they were applied preplant to a sweet corn crop to determine PAN via fertilizer N equivalency (n = 37). Well-composted materials (n = 14) had a single decomposition rate, averaging 0.003 d(-1). For uncomposted materials, decomposition was rapid (>0.01 d(-1)) for the first 10 to 30 d. The laboratory incubation and the full-season PAN determination in the field gave similar estimates of PAN across amendments. The linear regression equation for lab PAN vs. field PAN had a slope not different from one and a y-intercept not different than zero. Much of the PAN released from amendments was recovered in the first 30 d. Field and laboratory measurements of PAN were strongly related to PAN estimated by DECOMPOSITION (r(2) > 0.7). Modeled PAN values were typically higher than observed PAN, particularly for amendments exhibiting high initial NH(4)-N concentrations or rapid decomposition. Based on our findings, we recommend that guidance publications for manure and compost utilization include short-term (28-d) decomposition and PAN estimates that can be useful to both modelers and growers.  相似文献   
108.
Management of animal manures to provide nutrients for crop growth has generally been based on crop N needs. However, because manures have a lower N/P ratio than most harvested crops, N-based manure management often oversupplies the crop-soil system with P, which can be lost into the environment and contribute to eutrophication of water bodies. We examined the effects of N- vs. P-based manure applications on N and P uptake by alfalfa (Medicago sativa L.), corn (Zea mays L.) for silage, and orchardgrass (Dactylis glomerata L.), leaching below the root zone, and accumulation of P in soil. Treatments included N- and P-based manure rates, with no nutrient input controls and inorganically fertilized plots for comparison. Nitrate concentrations in leachate from inorganic fertilizer or manure treatments averaged 14 mg NO(3)-N L(-1), and did not differ by nutrient treatment. Average annual total P losses in leachate did not exceed 1 kg ha(-1). In the top 5 cm of soil in plots receiving the N-based manure treatment, soil test P increased by 47%, from 85 to 125 mg kg(-1). Nitrogen- and P-based manure applications did not differ in ability to supply nutrients for crop growth, or in losses of nitrate and total P in leachate. However, the N-based manure led to significantly greater accumulation of soil test P in the surface 5 cm of soil. Surface soil P accumulation has implications for increased risk of off-field P movement.  相似文献   
109.
The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate removal rates ranged from 400 to 1500 microg g VSS(-1) h(-1), depending on the source of biomass, electron donor, and the initial selenate concentration. The granular structure protects the microorganisms when exposed to high selenate concentrations (0.1 to 1 mM). Anaerobic granular sludge "Eerbeek," originating from a UASB reactor treating paper mill wastewater, removed about 90, 50, and 36% of 0.1, 0.5, and 1 mM of Se, respectively, from the liquid phase when incubated with 20 mM lactate at 30 degrees C and pH 7.5. Selenite, elemental Se (Se(o)), and metal selenide precipitates were the conversion products. Enrichments from the anaerobic granular sludge "Eerbeek" were able to convert 90% of the 10-mM selenate to Se(o) at a rate of 1505 microg Se(VI) g cells(-1) h(-1), a specific growth rate of 0.0125 g cells h(-1), and a yield of 0.083 g cells mg Se(-1). Both microbial metabolic processes (e.g dissimilatory reduction) as well as microbially mediated physicochemical mechanisms (adsorption and precipitation) contribute to the removal of selenate from the Se-containing medium.  相似文献   
110.
A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号