首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   11篇
安全科学   7篇
废物处理   35篇
环保管理   75篇
综合类   45篇
基础理论   61篇
污染及防治   48篇
评价与监测   26篇
社会与环境   7篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   10篇
  2017年   13篇
  2016年   9篇
  2015年   5篇
  2014年   7篇
  2013年   20篇
  2012年   16篇
  2011年   13篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   15篇
  2006年   11篇
  2005年   9篇
  2004年   13篇
  2003年   5篇
  2002年   6篇
  2001年   11篇
  2000年   5篇
  1999年   2篇
  1998年   7篇
  1997年   5篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   2篇
  1987年   4篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有305条查询结果,搜索用时 265 毫秒
21.
Abstract:  Tracer studies are needed to better understand watershed soil erosion and calibrate watershed erosion models. For the first time, stable nitrogen and carbon isotopes (δ15N and δ13C) and the carbon to nitrogen atomic ratio (C/N) natural tracers are used to investigate temporal and spatial variability of erosion processes within a sub‐watershed. Temporal variability was assessed by comparing δ15N, δ13C, and C/N of eroded‐soils from a non‐equilibrium erosion event immediately following freezing and thawing of surface soils with two erosion events characterized by equilibrium conditions with erosion downcutting. Spatial variability was assessed for the equilibrium events by using the δ15N and δ13C signatures of eroded‐soils to measure the fraction of eroded‐soil derived from rill/interrill erosion on upland hillslopes as compared to headcut erosion on floodplains. In order to perform this study, a number of tasks were carried out including: (1) sampling source‐soils from upland hillslopes and floodplains, (2) sampling eroded‐soils with an in situ trap in the stream of the sub‐watershed, (3) isotopic and elemental analysis of the samples using isotope ratio mass spectrometry, (4) fractioning eroded‐soil to its upland rill/interrill and floodplain headcut end‐members using an unmixing model within a Bayesian Markov Chain Monte Carlo framework, and (5) evaluating tracer unmixing model results by comparison with process‐based erosion prediction models for rill/interrill and headcut erosion processes. Results showed that finer soil particles eroded during the non‐equilibrium event were enriched in δ15N and δ13C tracers and depleted in C/N tracer relative to coarser soil particles eroded during the equilibrium events. Correlation of tracer signature with soil particle size was explainable based on known biogeochemical processes. δ15N and δ13C were also able to distinguish between upland rill/interrill erosion and floodplain headcut erosion, which was due to different plant cover at the erosion sources. Results from the tracer unmixing model highlighted future needs for coupling rill/interrill and headcut erosion prediction models.  相似文献   
22.
Livestock grazing and treading is strongly linked to a decrease in freshwater quality and promotes eutrophication. A two-year field trial was carried out to investigate the influence cattle, sheep and deer have on soil physical quality and the loss of phosphorus (P) and suspended sediment (SS) in surface runoff. Surface runoff plots (4 m long by 1 m wide) were installed within areas designated as stock or ungrazed (control). Surface runoff was collected and analysed for concentrations and loads of P fractions (dissolved reactive P-DRP, dissolved unreactive P-DUP, total dissolved P-TDP, particulate P-PP and total P-TP) and SS. Grazed at equivalent stocking density, soil physical samples (macroporosity, bulk density, and saturated hydraulic conductivity Ksat) were taken after each grazing event (n = 11). Soil physical data indicated differences between cattle, sheep and deer with cattle having greater negative effects. However, these differences had no impact on P and SS losses between stock types in surface runoff. Significant relationships showed that an increase in macroporosity, Ksat, and time (days) since grazing decreased concentrations and loads of P and SS losses. A separate rainfall simulation study also revealed that an increase in simulated cattle treading intensity increased the volume of surface runoff and SS losses. Most surface runoff (> 90%) occurred in winter when soil moisture was at or above field capacity. A seasonal effect was observed and showed that although the greatest P loads occurred in winter, the greatest P concentrations occurred in summer months, under infiltration-excess conditions. These summer losses could pose a risk to receiving waterways because increased light and warmth may induce an algal response compared to winter. While there is limited scope to manage for infiltration-excess surface runoff losses from pasture, with most runoff occurring in winter, these findings reinforce the use of mitigation strategies such as restricted or nil grazing in winter when soil moisture has reached field capacity to minimise P and SS loss to surface water, regardless of stock type.  相似文献   
23.
Abstract: Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf‐grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface‐water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land‐cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land‐cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over‐estimation of the pesticide use compared to estimates from sales data.  相似文献   
24.
Accurate spatial representation of climatic patterns is often a challenge in modeling biophysical processes at the watershed scale, especially where the representation of a spatial gradient in rainfall is not sufficiently captured by the number of weather stations. The spatial rainfall generator (SRGEN) is developed as an extension of the “weather generator” (WXGEN), a component of the Agricultural Policy/Environmental eXtender (APEX) model. SRGEN generates spatially distributed daily rainfall using monthly weather statistics available at multiple locations in a watershed. The spatial rainfall generator as incorporated in APEX is tested on the Cowhouse watershed (1,178 km2) in central Texas. The watershed presented a significant spatial rainfall gradient of 2.9 mm/km in the lateral (north‐south) directions based on four rainfall gages. A comparative analysis between SRGEN and WXGEN indicates that SRGEN performs well (PBIAS = 2.40%). Good results were obtained from APEX for streamflow (NSE = 0.99, PBIAS = 8.34%) and NO3‐N and soluble P loads (PBIAS ≈ 6.00% for each, respectively). However, APEX underpredicted sediment yield and organic N and P loads (PBIAS: 24.75‐27.90%) with SRGEN, although its uncertainty in output was lower than WXGEN results (PBIAS: ?13.02 to ?46.13%). The overall improvement achieved in rainfall generation by SRGEN is demonstrated to be effective in the improving model performance on flow and water quality output.  相似文献   
25.
26.
ABSTRACT: This study investigates the degree of economic inefficiency of the current institutional arrangements for surface and ground water management in meeting urban water demand in the Jakarta region. A numerical model of integrated surface and ground water management is developed using GAMS (General Algebraic Modelling System) software. The model maximizes the net present value of social benefits from piped water and ground water consumption across all users over time from 1999 to 2025. Four policy scenarios are examined: the status quo, the social planner's solution, and two ground water pumping quota scenarios: an aggregate ground water pumping quota and a partial quota applied to commercial and industrial users. Three variations in each policy scenario are considered: investment in water infrastructure of the Jakarta water enterprise (PAM Jaya), water demand growth, and discount rates. The status quo, depending on the investment option, the growth of water demand, and the discount rate, results in a 7.4 to 47.8 percent loss in economic efficiency relative to the social planner's solution. The partial quota is the most feasible, applicable, and manageable scenario. The optimal investment option could increase the volume of piped water supply and reduce the cost of water production. The volume of water delivery could increase by up to 156 percent, but it implies only a 35 percent increase in the surface raw water demands above the current level. However, it does not significantly reduce cumulative ground water extraction over the time period considered.  相似文献   
27.
Recent astrophysical studies suggest a high degree of order in the inanimate universe, stemming from cosmic beginnings. This state is consistent with the nonrandomness observed experimentally in the thermal polymers of amino acids that figure as an early inanimate stage in organic evolution. The various stages in inanimate matter, protocells, and evolved cells and the degree of order that they represent comport with the second law of thermodynamics on a cosmic scale.  相似文献   
28.
29.
30.
The effects of SO(2) on species exhibiting Crassulacean Acid Metabolism (CAM) were determined with short term-high concentration 'acute' greenhouse exposures (0.6 to 3.0 microl liter(-1) (ppm) SO(2) for 2 and 8 h), and long term-low concentration 'chronic' field exposures (0.35 to 0.90 microl liter(-1) SO(2) for 32 to 79 h periodically over 7 to 13 days). In the acute greenhouse exposures, visible injury was observed on Opuntia basilaris Engelm. & Bigel., exposed to 2.0 microl liter(-1) SO(2), but no injury was observed on Ananas comosus (L.) Merr., Bryophyllum blossfeldiana Poelln., Bryophyllum pinnata (Lam.) Pers., or Bryophyllum tubiflora (Harv.) Hamet, exposed to up to 2.8 microl liter(-1) SO(2) for 8 h. Stomatal conductance during the exposures averaged 0.067+/-0.021mol(-2)s(-1) for Opuntia basilaris, 0.029+/-0.008mol(-2)s(-1) for Ananas comosus, and 0.029+/-0.008mol m(-2)s(-1) for Bryophyllum pinnata. Opuntia basilaris was injured early during the day, but not at night; with the injury appearing as a white necrotic banding across just fully expanded pads. Moderately injured pads would regreen beginning 1 to 2 weeks after exposure. In chronic field exposures, no visible injury from SO(2) was observed on Opuntia basilaris, Dudleya arizonica Rose or Agave deserti Engelm. plants, grown either with supplemental irrigation or natural rainfall. In addition, in the field SO(2) had no effect on CO(2) uptake, total sulfur content, transpiration, or tissue acidity in either the light or the dark, or in irrigated vs natural rainfall plots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号