首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13164篇
  免费   143篇
  国内免费   111篇
安全科学   360篇
废物处理   347篇
环保管理   1985篇
综合类   3272篇
基础理论   3115篇
环境理论   6篇
污染及防治   3322篇
评价与监测   582篇
社会与环境   363篇
灾害及防治   66篇
  2018年   123篇
  2017年   129篇
  2016年   185篇
  2015年   155篇
  2014年   203篇
  2013年   965篇
  2012年   307篇
  2011年   435篇
  2010年   311篇
  2009年   411篇
  2008年   451篇
  2007年   482篇
  2006年   436篇
  2005年   327篇
  2004年   347篇
  2003年   385篇
  2002年   324篇
  2001年   468篇
  2000年   324篇
  1999年   219篇
  1998年   155篇
  1997年   148篇
  1996年   182篇
  1995年   180篇
  1994年   204篇
  1993年   181篇
  1992年   183篇
  1991年   181篇
  1990年   209篇
  1989年   194篇
  1988年   166篇
  1987年   163篇
  1986年   148篇
  1985年   166篇
  1984年   147篇
  1983年   159篇
  1982年   161篇
  1981年   163篇
  1980年   149篇
  1979年   145篇
  1978年   143篇
  1977年   129篇
  1976年   136篇
  1975年   114篇
  1974年   143篇
  1973年   125篇
  1972年   125篇
  1971年   105篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
651.
Despite the increased importance of and attention to renewable energy, its share in the overall energy mix has varied significantly across countries and over time. There are many determinants of clean energy transitions; this study focuses on political constraints. Here it is argued that political systems that have fewer political constraints have fewer access points through which powerful status quo veto players can slow the progress of clean energy reforms. To test the theory, a hierarchical model is applied on a dataset of 125 countries over four decades. The results provide significant support for the theory. Furthermore, the effects for political constraints hold even when we distinguish between hydro and non-hydro renewable sources and control for regime type. This study builds on research that recognizes the importance of politics in understanding the challenges and opportunities of clean energy reform.  相似文献   
652.
In the developing world, vegetables are commonly grown in suburban areas irrigated with untreated wastewater containing potentially harmful elements (PHEs). In Pakistan, there is no published work on the bioaccessibility aspect of PHEs and dietary minerals (DMs) in sewage-irrigated soil or the vegetables grown on such soils in Pakistan. Several industrial districts of Pakistan were selected for assessment of the risk associated with the ingestion of vegetables grown over sewage-irrigated soils. Both the total and bioaccessible fraction of PHEs (Cd, Co, Cr, Ni, and Pb) and DMs (Fe, Cu, Mn, Zn, Ca, Mg, and I) in soils and vegetable samples were measured. The concentrations of these PHEs and DMs in sewage-irrigated and control soils were below published upper threshold limits. However, compared to control soils, sewage irrigation over the years decreased soil pH (7.7 vs 8.1) and enhanced dissolved organic carbon (1.8 vs 0.8 %), which could enhance the phyto-availability of PHEs and DMs to crops. Of the PHEs and DMs, the highest transfer factor (soil to plant) was noted for Cd and Ca, respectively. Concentrations of PHEs in most of the sewage-irrigated vegetables were below the published upper threshold limits, except for Cd in the fruiting portion of eggplant and bell pepper (0.06–0.08 mg/kg Cd, dry weight) at three locations in Gujarat and Kasur districts. The bioaccessible fraction of PHEs can reduce the context of dietary intake measurements compared to total concentrations, but differences between both measurements were not significant for Cd. Since the soils of the sampled districts are not overly contaminated compared to control sites, vegetables grown over sewage-irrigated soils would provide an opportunity to harvest mineral-rich vegetables potentially providing consumers 62, 60, 12, 104, and 63 % higher dietary intake of Cu, Mn, Zn, Ca, and Mg, respectively. Based on Fe and vanadium correlations in vegetables, it is inferred that a significant proportion of total dietary Fe intake could be contributed by soil particles adhered to the consumable portion of vegetables. Faecal sterol ratios were used to identify and distinguish the source of faecal contamination in soils from Gujranwala, Gujarat, and Lahore districts, confirming the presence of human-derived sewage biomarkers at different stages of environmental alteration. A strong correlation of some metals with soil organic matter concentration was observed, but none with sewage biomarkers.  相似文献   
653.
This study assessed metals in irrigation water, soil and potato crops impacted by mining discharges, as well as potential human health risk in the high desert near the historic mining center of Potosí, Bolivia. Metal concentrations were compared with international concentration limit guidelines. In addition, an ingested average daily dose and minimum risk level were used to determine the hazard quotient from potato consumption for adults and children. Irrigation water maximum concentrations of Cd, Pb and Zn in mining-impacted sites were elevated 20- to 1100-fold above international concentration limit guidelines. Agricultural soils contained total metal concentrations of As, Cd, Pb and Zn that exceeded concentration limits in agricultural soil guidelines by 22-, 9-, 3- and 12-fold, respectively. Potato tubers in mining-impacted sites had maximum concentrations of As, Cd, Pb and Zn that exceeded concentration limits in commercially sold vegetables by 9-, 10-, 16- and fourfold, respectively. Using conservative assumptions, hazard quotients (HQ) for potatoes alone were elevated for As, Cd and Pb among children (range 1.1–71.8), in nearly all of the mining-impacted areas; and for As and Cd among adults (range 1.2–34.2) in nearly all of the mining-impacted areas. Only one mining-impacted area had a Pb adult HQ for potatoes above 1 for adults. Toxic trace elements in a major regional dietary staple may be a greater concern than previously appreciated. Considering the multitude of other metal exposure routes in this region, it is likely that total HQ values for these metals may be substantially higher than our estimates.  相似文献   
654.
Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10?6) and minimal non-cancer risks (hazard index <1) to adults and children.  相似文献   
655.
Snow is an important component of the hydrologic cycle for many regions worldwide. In addition to vital water resources, snowmelt can be important for forest ecosystem dynamics and flood risk. However, standard design events in the United States lack a design snowmelt event, including only precipitation events, though snowmelt has been shown to be larger than rainfall. In this article, we present a method using hourly snow water equivalent data to develop and test a function for representing the diurnal pattern of snowmelt. A two‐parameter beta distribution function is modified for the purposes of this study and found to fit the pattern of snowmelt well with a root mean squared error of 0.008. Soil moisture sensors were additionally utilized to assess the timing of the snowmelt water outflow from the base of the snowpack that supports the shape of the function, but suggests that the timing of losses recorded on snow pillows lag as much as 3 h. Further testing of the function showed the shape of the function to be accurate. The methods developed and tested in this paper can be applied for design purposes comparing snowmelt and rainfall events or to improve hydrological models investigating processes such as streamflow or groundwater recharge.  相似文献   
656.
657.
The Farm Animal Welfare Council’s concept of a Good Life gives an idea of an animal’s quality of life that is over and above that of a mere life worth living. The concept needs explanation and clarification, in order to be meaningful, particularly for consumers who purchase farm animal produce. The concept could allow assurance schemes to apply the label to assessments of both the potential of each method of production, conceptualised in ways expected to enhance consumers’ engagement such as ‘naturalness’ and ‘freedom’; and the concept of a life worth living as a safeguard threshold below which no animal’s actual welfare should fall, based on each animal’s overall affective states. This may provide a framework for development of the Good Life concept, within scientific and sociological fields, in order to allow reliable and influential use by assessors, consumers and retailers.  相似文献   
658.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
659.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   
660.
Representative profiles for particulate matter particles less than or equal to 2.5 µm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the U.S. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data.
Implications: PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号