首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   13篇
  国内免费   82篇
安全科学   27篇
废物处理   23篇
环保管理   34篇
综合类   140篇
基础理论   68篇
环境理论   1篇
污染及防治   112篇
评价与监测   25篇
社会与环境   8篇
灾害及防治   11篇
  2023年   6篇
  2022年   23篇
  2021年   13篇
  2020年   10篇
  2019年   14篇
  2018年   17篇
  2017年   14篇
  2016年   16篇
  2015年   15篇
  2014年   28篇
  2013年   35篇
  2012年   33篇
  2011年   28篇
  2010年   18篇
  2009年   20篇
  2008年   23篇
  2007年   18篇
  2006年   17篇
  2005年   13篇
  2004年   15篇
  2003年   10篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有449条查询结果,搜索用时 750 毫秒
151.

The current energy crisis, depletion of fossil fuels, and global climate change have made it imperative to find alternative sources of energy that are both economically sustainable and environmentally friendly. Here we review various pathways for converting biomass into bioenergy and biochar and their applications in producing electricity, biodiesel, and biohydrogen. Biomass can be converted into biofuels using different methods, including biochemical and thermochemical conversion methods. Determining which approach is best relies on the type of biomass involved, the desired final product, and whether or not it is economically sustainable. Biochemical conversion methods are currently the most widely used for producing biofuels from biomass, accounting for approximately 80% of all biofuels produced worldwide. Ethanol and biodiesel are the most prevalent biofuels produced via biochemical conversion processes. Thermochemical conversion is less used than biochemical conversion, accounting for approximately 20% of biofuels produced worldwide. Bio-oil and syngas, commonly manufactured from wood chips, agricultural waste, and municipal solid waste, are the major biofuels produced by thermochemical conversion. Biofuels produced from biomass have the potential to displace up to 27% of the world's transportation fuel by 2050, which could result in a reduction in greenhouse gas emissions by up to 3.7 billion metric tons per year. Biochar from biomass can yield high biodiesel, ranging from 32.8% to 97.75%, and can also serve as an anode, cathode, and catalyst in microbial fuel cells with a maximum power density of 4346 mW/m2. Biochar also plays a role in catalytic methane decomposition and dry methane reforming, with hydrogen conversion rates ranging from 13.4% to 95.7%. Biochar can also increase hydrogen yield by up to 220.3%.

  相似文献   
152.
● EE2 photodegradation behavior in the presence of four WWTPs’ DOM was explored. ● The 3DOM* played a major role in the EE2 photodegradation mediated by WWTPs’ DOM. ● The A2/O process DOM contained more aromatic and oxygen-containing substances. ● Possible photosensitivity sources of DOM in the A2/O process were proposed. Dissolved organic matter (DOM) from each treatment process of wastewater treatment plants (WWTPs) contains abundant photosensitive substances, which could significantly affect the photodegradation of 17α-ethinylestradiol (EE2). Nevertheless, information about EE2 photodegradation behavior mediated by DOM from diverse WWTPs and the photosensitivity sources of such DOM are inadequate. This study explored the photodegradation behavior of EE2 mediated by four typical WWTPs’ DOM solutions and investigated the photosensitivity sources of DOM in the anaerobic-anoxic-oxic (A2/O) process. The parallel factor analysis identified three varying fluorescing components of these DOM, tryptophan-like substances or protein-like substances, microbial humus-like substances, and humic-like components. The photodegradation rate constants of EE2 were positively associated with the humification degree of DOM (P < 0.05). The triplet state substances were responsible for the degradation of EE2. DOM extracted from the A2/O process, especially in the secondary treatment process had the fastest EE2 photodegradation rate compared to that of the other three processes. Four types of components (water-soluble organic matter (WSOM), extracellular polymeric substance, humic acid, and fulvic acid) were separated from the A2/O process DOM. WSOM had the highest promotion effect on EE2 photodegradation. Fulvic acid-like components and humic acid-like organic compounds in WSOM were speculated to be important photosensitivity substances that can generate triplet state substances. This research explored the physicochemical properties and photosensitive sources of DOM in WWTPs, and explained the fate of estrogens photodegradation in natural waters.  相似文献   
153.
本文结合鞋靴保暖功效学原理,重点研究了支撑式鞋垫和橡胶双密度胶底结构。通过实验确定了鞋底发泡层视密度的范围在0.75g/cm3~0.85g/cm3之间,发泡橡胶的拉伸和导热性能达到平衡,兼顾了保暖鞋的耐穿和防寒隔热性能。  相似文献   
154.
赖文光 《环境技术》2006,24(4):8-13
不同的温度参数数据处理方法有不同的计算结果,本文针对检测与评定气候环境试验设备的技术性能中存在的问题,分析了三个标准(GB 11158-89、GB/T 5170.1-1995、JTM K 05-1991)的温度参数数据处理方法,比对了二组实际检测数据的计算结果,说明"绝对极值法"科学准确、简捷实用.  相似文献   
155.
• Dual-reaction-center (DRC) system breaks through bottleneck of Fenton reaction. • Utilization of intrinsic electrons of pollutants is realized in DRC system. • DRC catalytic process well continues Fenton’s story. Triggered by global water quality safety issues, the research on wastewater treatment and water purification technology has been greatly developed in recent years. The Fenton technology is particularly powerful due to the rapid attack on pollutants by the generated hydroxyl radicals (•OH). However, both heterogeneous and homogeneous Fenton/Fenton-like technologies follow the classical reaction mechanism, which depends on the oxidation and reduction of the transition metal ions at single sites. So even after a century of development, this reaction still suffers from its inherent bottlenecks in practical application. In recent years, our group has been focusing on studying a novel heterogeneous Fenton catalytic process, and we developed the dual-reaction-center (DRC) system for the first time. In the DRC system, H2O2 and O2 can be efficiently reduced to reactive oxygen species (ROS) in electron-rich centers, while pollutants are captured and oxidized by the electron-deficient centers. The obtained electrons from pollutants are diverted to the electron-rich centers through bonding bridges. This process breaks through the classic Fenton mechanism, and improves the performance and efficiency of pollutant removal in a wide pH range. Here, we provide a brief overview of Fenton’s story and focus on combing the discovery and development of the DRC technology and mechanism in recent years. The construction of the DRC and its performance in the pollutant degradation and interfacial reaction process are described in detail. We look forward to bringing a new perspective to continue Fenton’s story through research and development of DRC technology.  相似文献   
156.
Environmental Science and Pollution Research - For the purpose of enhancing the removal rate of nitrogen (N) and organic matters, intermittent aeration and carbon source were used in...  相似文献   
157.
生物法降解养殖场臭气中H2S的反应器启动   总被引:1,自引:1,他引:0  
畜禽养殖场臭气成分复杂,完全去除较为困难。生物法是目前应用较广泛的脱臭方法,其中能否将生物膜附着在填料上是影响生物法去除恶臭气体效率的重要因素。本实验采用定时定量投加Na2S的方式驯化活性污泥,并选用MLSS浓度和SO42-浓度增量变化2个指标作为污泥驯化成熟的指标,比传统的以MLSS作为污泥驯化成熟的指标更准确。采用循环污泥的挂膜方式,运行2 d后,通入新鲜的空气和H2S气体,2周后反应器启动成功。  相似文献   
158.
采用脱色菌Citrobacter sp. CK3,以活性红KN-3B染料为处理对象,在厌氧批式反应条件下,系统考察了pH值,温度和染料浓度对脱色反应速度的影响;通过动力学模拟及反应过程中染料的UV-Vis扫描图分析,探讨了脱色反应机理。结果表明:Citrobacter sp. CK3对活性红KN-3B的脱色反应的适宜pH为7~9;脱色反应速度在温度为32℃时达到最大。染料初浓度从57 mg/L逐渐增大到458 mg/L时脱色率逐渐降低。脱色过程中染料的偶氮键发生断裂,脱色反应符合二级反应动力学。  相似文献   
159.
A network of fibers comprising orthorhombic molybdenum trioxide (α-MoO(3)) crystals were synthesized using paper as template via a biomorphic approach. The template was completely removed by annealing the sample at 600°C for 5?min. Monoclinic MoO(3) was formed and consequently converted into orthorhombic α-MoO(3) after prolonged annealing. Three milligrams of the biomorphic α-MoO(3) could degrade up to 90% of a methyl violet aqueous solution with a concentration of 20?mg/L under normal visible light. The size of the α-MoO(3) grains and the porosity of the biomorphic sample affected catalytic performance.  相似文献   
160.
Intensive agricultural development can change land use, which can further affect regional ecosystem services and functions. With the rapid growth of the population and the national demand for food, the northeast of China, which is located in the high latitudes, has experienced four agricultural developments since the 1950s. The original wetlands of this area were developed for farmland. The evaluation of ecosystem services is conducted to reveal the ecosystem status and variable trends caused by land reclamation. The aim of this study is to provide scientific basis for environmental management and for the sustainable development of agriculture in Northeast China. With GIS-RS technology, a typical farm was chosen to analyze variations in the ecosystem service value in response to land use changes during the study period. The total ecosystem service value of the farm decreased from 7523.10 million Yuan in 1979 to 4023.59 million Yuan in 2009 with an annual rate of ?1.6?% due to the decreasing areas of woodland and wetland. The increased areas of cropland, water area and grassland partly offset the loss of the total value, but the loss was still greater than the compensation. Waste treatment and climate regulation were the top two service functions with high service values, contributing to approximately 50?% of the total service value. The spatial difference of the ecosystem service value also was analyzed. The wetlands located in the central and northeastern sections of the farm changed significantly. From the aspect of ecosystem service value, the wetland and water area should be conserved, as they have the highest value coefficients. The accuracy of the value coefficient, however, needs to be studied further in future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号