首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   0篇
  国内免费   2篇
安全科学   13篇
废物处理   5篇
环保管理   26篇
综合类   24篇
基础理论   20篇
污染及防治   61篇
评价与监测   15篇
社会与环境   15篇
灾害及防治   7篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   25篇
  2012年   6篇
  2011年   10篇
  2010年   3篇
  2009年   13篇
  2008年   4篇
  2007年   9篇
  2006年   10篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
71.
The spatial and temporal variability of riverbed vertical hydraulic conductivity (K(v)) was investigated at a site of induced infiltration, associated with a municipal well field, to assess the impact of high-stage events on scour and subsequently the riverbed K(v). Such impacts are important when considering the potential loss of riverbank filtration capacity due to storm events. The study site, in and along the Great Miami River in southwest Ohio, overlaid a highly productive glacial-outwash aquifer. A three-layer model for this system was conceptualized: a top layer of transient sediment, a second layer comprising large sediment resistant to scour, but clogged with finer sediment (the armor/colmation layer), and a third layer that was transitional to the underlying higher-K(v) aquifer. One location was studied in detail to confirm and quantify the conceptual model. Methods included seepage meters, heat-flow modeling, grain-size analyses, laboratory permeameter tests, slug tests and the use of scour chains and pressure-load cells to directly measure the amount of sediment scour and re-deposition. Seepage meter measured riverbed K(v) ranged from 0.017 to 1.7 m/d with a geometric mean of 0.19 m/d. Heat-transport model-calibrated estimates were even lower, ranging from 0.0061 to 0.046 m/d with a mean of 0.017 m/d. The relatively low K(v) was indicative of the clogged armor layer. In contrast, slug tests in the underlying riverbed sediment yielded K(v) values an order of magnitude greater. There was a linear relationship between scour chain measured scour and event intensity with a maximum scour of only 0.098 m. Load-cell pressure sensor data over a 7-month period indicated a total sediment-height fluctuation of 0.42 m and a maximum storm-event scour of 0.28 m. Scour data indicated that the assumed armor/colmation layer almost always remained intact. Based on measured layer conductivities and thicknesses, the overall K(v) of this conceptualized system was 1.6 m/d. Sensitivity analyses indicated that even complete scour of the armor/colmation layer would likely increase the overall K(v) only by a factor of 1.5. Most scour events observed removed only the transient sediment, having very little effect on the entire system indicating low risk of losing filtration capacity during storms. The research, however, focused on the point bar, depositional side of the river. More research of the entire river profile is necessary.  相似文献   
72.
73.
74.
Carbon dioxide (CO2) emissions from inland waters to the atmosphere are a pivotal component of the global carbon budget. Anthropogenic land use can influence riverine CO2 emissions, but empirical data exploring cause-effect relationships remain limited. Here, we investigated CO2 partial pressures (pCO2) and degassing in a monsoonal river (Yue River) within the Han River draining to the Yangtze in China. Almost 90% of river samples were supersaturated in CO2 with a mean ± standard deviation of 1474 ± 1614 µatm, leading to emissions of 557 - 971 mmol/m2/day from river water to the atmosphere. Annual CO2 emissions were 1.6 - 2.8 times greater than the longitudinal exports of riverine dissolved inorganic and organic carbon. pCO2 was positively correlated to anthropogenic land use (urban and farmland), and negatively correlated to forest cover. pCO2 also had significant and positive relationships with total dissolved nitrogen and total dissolved phosphorus. Stepwise multiple regression models were developed to predict pCO2. Farmland and urban land released nutrients and organic matter to the river system, driving riverine pCO2 enrichment due to enhanced respiration in these heterotrophic rivers. Overall, we show the crucial role of land use driving riverine pCO2, which should be considered in future large-scale estimates of CO2 emissions from streams. Land use change can thus modify the carbon balance of urban-river systems by enhancing river emissions, and reforestation helps carbon neutral in rivers.  相似文献   
75.
76.
Environmental Science and Pollution Research - Toxicological studies use “specialty chemicals” and, thus, should assess and report both identity and degree of purity (homogeneity) of...  相似文献   
77.
Powdered maize tassels were studied and found to exhibit metal sorption properties due to the availability of functional groups. The tassels have a high amount of soluble organic substances that can dissolve in aqueous media, contributing to secondary pollution during a water treatment process. A chelating agent was chemically attached on the maize tassels with a view to increase the sorption capacity, minimize leaching, and enhance the tassels’ stability. Thermogravimetric analysis confirmed that modification improved their thermal stability to withstand temperatures above 600°C as well as reduced the “secondary pollution”. The modified sorbent was employed for the sorption of lead, copper, and cadmium ions in both the model solutions and the real samples. The contact time and pH were optimized after which Langmuir and Freundlich isotherms were applied to the data. The sorption capacities for Cu2+, Cd2+, and Pb2+ improved from 3.4, 0.8, and 1.7?g?kg?1, respectively, to 6.3, 2.6, and 2.6?g?kg?1 in the same order. The sorbent was shown to remove up to 95% of the metals in less than 10 min. This study has a potential application for the remediation of polluted waters.  相似文献   
78.
The construction sector carries out a very important role in the development of society. It is a basic component of economic activity, having a great influence on employment generation and country growth. The sector generates appreciable environmental changes and effects throughout the planet, leading to gradual exhaustion of natural resources and contamination of basic elements, such as air, water and soil. Recently, there have been advances in favour of more environmentally friendly buildings. Basically, sustainable construction has centred on residential and office buildings. It could be said that there is a lack of sustainability in the construction of industrial buildings, as they present characteristics which differ from other building typologies. This article aims to assess and analyze industrial building environmental effects, and considers a set of green study criteria, such as: location, materials, energy and water consumption, construction and deconstruction characteristics, and waste management in industrial building. At the same time, the studies are hierarchically structured into different assessment elements, such as: criteria, subcriteria and, finally, indicators, comprising the assessment model.  相似文献   
79.
Estimates of the global carbon sink induced by nitrogen enrichment range vary widely, from nearly zero to 2.3 Gt C year?1. It is necessary to reduce this uncertainty if we are to make accurate predictions of the future magnitude of the terrestrial carbon sink. Here, we present a Monte Carlo approach to uncertainty and sensitivity analysis of three ecosystem models, Century, BGC and Hybrid. These models were applied to a coniferous forest ecosystem in Sweden. The best estimate of the change in total carbon content of the ecosystem with the cumulative change in nitrogen deposition over 100 years, ΔCtotal/ΔNdeposition was 20.1 kg C (kg N)?1 using the pooled mean, with a pooled standard deviation of 13.8 kg C (kg N)?1. Variability in parameters accounted for 92% of the total uncertainty in ΔCtotal/ΔNdeposition, and only 8% was attributable to differences between models. The most sensitive parameters were those which controlled the allocation of assimilate between leaves, roots and stem. In particular, an increase in allocation to fine roots led to a large reduction in ΔCtotal/ΔNdeposition in all models, because the fine roots have a very high turnover rate, and extra carbon allocated there is soon lost through mortality and decomposition.  相似文献   
80.
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号