首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9803篇
  免费   373篇
  国内免费   3842篇
安全科学   738篇
废物处理   650篇
环保管理   860篇
综合类   5100篇
基础理论   1649篇
环境理论   2篇
污染及防治   3911篇
评价与监测   393篇
社会与环境   319篇
灾害及防治   396篇
  2024年   6篇
  2023年   152篇
  2022年   486篇
  2021年   393篇
  2020年   291篇
  2019年   268篇
  2018年   361篇
  2017年   460篇
  2016年   524篇
  2015年   673篇
  2014年   814篇
  2013年   1048篇
  2012年   907篇
  2011年   894篇
  2010年   688篇
  2009年   656篇
  2008年   738篇
  2007年   587篇
  2006年   496篇
  2005年   368篇
  2004年   287篇
  2003年   354篇
  2002年   306篇
  2001年   252篇
  2000年   263篇
  1999年   244篇
  1998年   249篇
  1997年   243篇
  1996年   223篇
  1995年   173篇
  1994年   119篇
  1993年   122篇
  1992年   104篇
  1991年   79篇
  1990年   54篇
  1989年   26篇
  1988年   27篇
  1987年   10篇
  1986年   17篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
In this paper, it proposed an index system for hazard and vulnerability evaluations of water distribution networks, based on the simulation of contamination events caused by pollutant injections at different junctions. It attempted to answer the following two questions in the case of contamination events: 1) Which are the most hazardous junctions? 2) Which are the most vulnerable junctions? With EPANET toolkit, it simulated the propagation of the contaminant, and calculated the peak concentration of the contaminant and mass delivered at different nodes. According to types of consumers, different weights were assigned to the consumer nodes for assessing the influence of the contaminant on the consumers. Using the method proposed herein, both the hazard index and vulnerability index were calculated for each node in the pipe network. The presented method was therefore applied to the water network of the city of Zhenjiang, which contains two water plants, two booster pump stations with storage tanks. In conclusion, the response time, the relationships between the peak concentration of contaminant and the total absorption are the most important factors in hazard and vulnerability evaluation of the water distribution network.  相似文献   
992.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   
993.
A flaw of demand coverage method in solving optimal monitoring stations problem under multiple demand patterns was identified in this paper. In the demand coverage method, the demand coverage of each set of monitoring stations is calculated by accumulating their demand coverage under each demand pattern, and the impact of temporal distribution between different time periods or demand patterns is ignored. This could lead to miscalculation of the optimal locations of the monitoring stations. To overcome this flaw, this paper presents a Demand Coverage Index (DCI) based method. The optimization considers extended period unsteady hydraulics due to the change of nodal demands with time. The method is cast in a genetic algorithm framework for integration with Environmental Protection Agency Net (EPANET) and is demonstrated through example applications. Results show that the set of optimal locations of monitoring stations obtained using the DCI method can represent the water quality of water distribution systems under multiple demand patterns better than the one obtained using previous methods.  相似文献   
994.
Soil low-molecular-weight (LMW) organic acids play important roles in the soil-forming process and the cycling of nutrients in Karst regions. In this study, we quantified the contents of LMW organic acids (including lactate, acetate, formate, malate, and oxalate) in soil solution over the Karst region of Guizhou Province, China using ion chromatography. The concentration of total LMW organic acids in topsoil solution ranged from 0.358 to 1.823 μmol·g-1, with an average of 0.912 μmol·g-1. The mean concentrations of lactate, acetate, formate, malate, and oxalate were 0.212±0.089, 0.302±0.228, 0.301±0.214, 0.014±0.018 and 0.086±0.118 μmol·g-1, respectively. There were also significant difference in the contents of these acids among four phases of rocky desertification, and their concentrations decreased with the aggravation of rocky desertification. The concentrations of the LMW organic acids were significantly positive correlated each other. Significant positive correlations were also observed among individual LMW organic acids in soil solution, and between them and soil available P, available K, exchangeable Ca, respectively. Furthermore, the concentrations of LMW organic acids were significantly positively correlated with inorganic anions (chlorides, nitrates, and sulfates) in Karst topsoil solution. Therefore, the concentrations of soil LMW organic acids might be one of driving force in the Karst rock desertification process in Guizhou Province.  相似文献   
995.
Iron plays an important role in marine primary productivity, and Synechococcus species as major contributors to the total photosynthetic biomass in the world’s oceans might be limited by iron supply in some regions. The present study aimed to compare the photosynthesis and flow cytometric signals of four Synechococcus strains grown under different iron concentrations with either nitrate or ammonium as the sole nitrogen source. Two oceanic strains were much more sensitive to iron limitation than two coastal strains. The inhibition of iron limitation on the growth, maximal PSII photochemical yield, maximal rate of relative electron transport and photochemical quenching of the two oceanic strains was higher than for their coastal counterparts. Under iron limitation condition, the connectivity factor between individual photosynthetic units (ρ) increased for the two coastal strains, while decreased for the two oceanic strains. Furthermore, iron limitation accelerated the Q A re-oxidation of the two oceanic strains and the PQ pool re-oxidation of the two coastal strains. Under iron limitation condition, the cell size of the two coastal strains and intracellular pigment concentrations of the two oceanic strains decreased, while the side light scatter/front light scatter (SS/FS) ratio of the two coastal strains increased. In contrast to iron limitation, nitrogen source only marginally affected the photosynthesis of the four Synechococcus strains. Ammonium enhanced the growth of the two coastal strains under iron-replete condition. For the two oceanic strains, ammonium increased their cell size and decreased their SS/FS ratio and intracellular pigment concentrations under iron-deplete and iron-replete conditions.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号