首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2871篇
  免费   79篇
  国内免费   27篇
安全科学   128篇
废物处理   117篇
环保管理   852篇
综合类   278篇
基础理论   694篇
环境理论   1篇
污染及防治   604篇
评价与监测   174篇
社会与环境   89篇
灾害及防治   40篇
  2023年   16篇
  2022年   20篇
  2021年   29篇
  2020年   22篇
  2019年   35篇
  2018年   50篇
  2017年   50篇
  2016年   69篇
  2015年   54篇
  2014年   60篇
  2013年   297篇
  2012年   118篇
  2011年   154篇
  2010年   115篇
  2009年   122篇
  2008年   159篇
  2007年   160篇
  2006年   129篇
  2005年   101篇
  2004年   83篇
  2003年   107篇
  2002年   89篇
  2001年   63篇
  2000年   51篇
  1999年   29篇
  1998年   48篇
  1997年   33篇
  1996年   40篇
  1995年   46篇
  1994年   34篇
  1993年   45篇
  1992年   38篇
  1991年   18篇
  1990年   25篇
  1989年   19篇
  1988年   30篇
  1987年   15篇
  1986年   21篇
  1985年   33篇
  1984年   28篇
  1983年   24篇
  1982年   40篇
  1981年   34篇
  1980年   35篇
  1979年   21篇
  1978年   28篇
  1977年   12篇
  1976年   10篇
  1972年   9篇
  1971年   8篇
排序方式: 共有2977条查询结果,搜索用时 781 毫秒
791.
Predicted climate warming is expected to have profound effects on bark beetle population dynamics in the southwestern United States. Temperature-mediated effects may include increases in developmental rates, generations per year, and changes in habitat suitability. As a result, the impacts of Dendroctonus frontalis and Dendroctonus mexicanus on forest resources are likely subject to amplification. To assess the implications of such change, we evaluated the generations per year of these species under three climate scenarios using a degree-day development model. We also assessed economic impacts of increased beetle outbreaks in terms of the costs of application of preventative silvicultural treatments and potential economic revenues forgone. Across the southwestern USA, the potential number of beetle generations per year ranged from 1–3+ under historical climate, an increase of 2–4+ under the minimal warming scenario and 3–5+ under the greatest warming scenario. Economic benefits of applying basal area reduction treatments to reduce forest susceptibility to beetle outbreaks ranged from 7.75/ha (NM) to7.75/ha (NM) to 95.69/ha (AZ) under historical conditions, and 47.96/ha (NM) to47.96/ha (NM) to 174.58/ha (AZ) under simulated severe drought conditions. Basal area reduction treatments that reduce forest susceptibility to beetle outbreak result in higher net present values than no action scenarios. Coupled with other deleterious consequences associated with beetle outbreaks, such as increased wildfires, the results suggest that forest thinning treatments play a useful role in a period of climate warming.  相似文献   
792.
Little is known about how plant nutritional and defensive qualities interact to influence predator–prey interactions. To address this need, we provided the neo-tropical milkweed, Asclepias curassavica, with two levels of nitrogen availability and examined how altered host-plant quality influenced the responses of a specialist aphid, Aphis nerii, and a coccinellid predator, Harmonia axyridis. Aphis nerii uses A. curassavica for multiple resources, including nutrition and sequestration of cardenolides for defense against natural enemies. Increased nitrogen availability improved A. curassavica quality by decreasing carbon-to-nitrogen (C:N) ratios and cardenolide concentrations, resulting in A. nerii that also had lower C:N ratios and cardenolide concentrations. Aphis nerii population growth was higher on plants with high nitrogen availability, compared with aphids on plants with low nitrogen availability. In no-choice feeding trials, Harmonia axyridis consumed more high C:N ratio aphids, suggesting a potential compensatory response to reduced aphid nutritional quality. Additionally, H. axyridis were able to consume more low-quality aphids at the expense of increasing exposure to increased cardenolide concentrations, suggesting that interactions between H. axyridis and A. nerii may be strongly influenced by prey nutritional quality. This work highlights the need to consider how variation in plant quality influences herbivore nutritional and defensive quality when examining mechanisms that influence predator–prey interactions.  相似文献   
793.
Considerable attention has focused on inter- and intraspecific variation in trophic niches of marine predators. Although this has revealed evidence for sexual segregation in distribution in some species, few studies have been able to address sex-related dietary specialisation. Stable isotope analysis of blood cells collected from albatrosses and petrels at South Georgia during chick-rearing indicated a difference in δ13C, suggesting that females fed to the north of males, only in two species with male-biased sexual size dimorphism; in no species did sexes differ in trophic level (δ15N). Based on a wider review, significant differences between sexes in isotope signatures were much more common in seabirds during the pre-laying or breeding than the nonbreeding period, presumably reflecting greater between-sex partitioning of resources when foraging ranges are more constrained and competition is greater. Sex differences, or their absence, were usually consistent across successive stages during the pre-laying and breeding periods, but not necessarily year-round nor between populations. Significant differences in isotope signatures between males and females were extremely rare in monomorphic species, suggesting a link between sexual size dimorphism and segregation in diet or distribution. Among the Southern Ocean albatrosses, sex differences in δ13C suggested the underlying mechanism was related to habitat specialisation, whereas in other size-dimorphic taxa (both male- and female-biased), sex differences were more common in δ15N than δ13C and therefore more consistent with size-mediated competitive exclusion or dietary specialisation.  相似文献   
794.
795.
Water quality impairment due to excessive nutrients and sediment is a major problem in the United States (U.S.). An important step in the mitigation of impairment in any given water body is determination of pollutant sources and amount. The sheer number of impaired waters and limited resources makes simplistic load estimation methods such as export coefficient (EC) methods attractive. Unfortunately ECs are typically based on small watershed monitoring data, which are very limited and/or often based on data collected from distant watersheds with drastically different conditions. In this research, we seek to improve the accuracy of these nutrient export estimation methods by developing a national database of localized EC for each ecoregion in the U.S. A stochastic sampling methodology loosely based on the Monte‐Carlo technique was used to construct a database of 45 million Soil and Water Assessment Tool (SWAT) simulations. These simulations consider a variety of climate, topography, soils, weather, land use, management, and conservation implementation conditions. SWAT model simulations were successfully validated with edge‐of‐field monitoring data. Simulated nutrient ECs compared favorably with previously published studies. These ECs may be used to rapidly estimate nutrient loading for any small catchment in the U.S. provided the location, area, and land‐use distribution are known.  相似文献   
796.
797.
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems.  相似文献   
798.
Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural(environmental)systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice,applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand(BOD) and total suspended solid(TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid(TSS)(91.3%), chemical oxygen demand(COD)(84.3%), and nitrogen(i.e.,80.7% for ammonium(NH)4-N, 80.8% for nitrate(NO)3-N, and 75.4% for total nitrogen(TN))as compared to other wetland systems. Vertical subsurface flow(VSSF) CWs removed TSS(84.9%), BOD(87.6%), and nitrogen(i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN)more efficiently than horizontal subsurface flow(HSSF) CWs, while HSSF CWs(69.8%)showed better total phosphorus(TP) removal compared to VSSF CWs(60.1%). Floating treatment wetlands(FTWs) showed comparable removal efficiencies for BOD(70.7%),NH4-N(63.6%), and TP(44.8%) to free water surface(FWS) CW systems.  相似文献   
799.
Integrated Measures of Anthropogenic Stress in the U.S. Great Lakes Basin   总被引:1,自引:0,他引:1  
Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.  相似文献   
800.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号