Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3–6 years and long 9–12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.
The degradation of starch- and polylactic acid-based plastic films by microorganisms extracted from compost was studied in a liquid medium. The various degradation products produced were measured throughout the duration of the experiment, and total carbon balances were estimated. For an easily biodegradable material, the evolution of the way carbon repartitioned between different degradation products was quite similar whatever the experimental condition or the type of substrate. On the other hand, for a resistant material exposed to these microorganisms, the nature of the biodegradation depended strongly on the experimental conditions. In the latter case, a differential scanning calorimetry analysis confirmed the importance of the applied norm on the state of the residual material. The consequences for improved methods of estimation of biodegradability of these materials are discussed. 相似文献
Making Cities Work: the role of local government in the urban environment. Richard Gilbert, Don Stevenson, Herbert Girardet & Richard Stren, 1996, London, Earthscan, 203pp. ISBN 1 85383 354 1, £13.95 pbk
Environmental Policy in an International Context, Vols 1-3: Perspectives, Conflicts and Prospects. P. Glasbergen & A. Blowers (Series Eds) London, Arnold
Rhetoric and Reality in Environmental Policy. M. Wintle & R. Reeve (Eds), 1994, Aldershot, Avebury Studies in Green Research, 154 pp. ISBN 1 85628 927 3
FutureNatural: Nature, Science, Culture. G. Roberston et al. (Eds) 1996, London, Routledge, ISBN 0415 070139, £40.00 hbk
Environmental Policy with Political Integration: the European Union and the United States. New horizons in environmental economics. John B. Braden, Henk Folmer & Thomas S. Ulen (Eds), 1996, Cheltenham, Elgar Publishing, 477 pp. ISBN 1 85898 217 0 相似文献
Surveillance for invasive non-indigenous species (NIS) is an integral part of a quarantine system. Estimating the efficiency of a surveillance strategy relies on many uncertain parameters estimated by experts, such as the efficiency of its components in face of the specific NIS, the ability of the NIS to inhabit different environments, and so on. Due to the importance of detecting an invasive NIS within a critical period of time, it is crucial that these uncertainties be accounted for in the design of the surveillance system. We formulate a detection model that takes into account, in addition to structured sampling for incursive NIS, incidental detection by untrained workers. We use info-gap theory for satisficing (not minimizing) the probability of detection, while at the same time maximizing the robustness to uncertainty. We demonstrate the trade-off between robustness to uncertainty, and an increase in the required probability of detection. An empirical example based on the detection of Pheidole megacephala on Barrow Island demonstrates the use of info-gap analysis to select a surveillance strategy. 相似文献
The pink pigeon (Nesoenas mayeri) is an endemic species of Mauritius that has made a remarkable recovery after a severe population bottleneck in the 1970s to early 1990s. Prior to this bottleneck, an ex situ population was established from which captive-bred individuals were released into free-living subpopulations to increase population size and genetic variation. This conservation rescue led to rapid population recovery to 400–480 individuals, and the species was twice downlisted on the International Union for the Conservation of Nature (IUCN) Red List. We analyzed the impacts of the bottleneck and genetic rescue on neutral genetic variation during and after population recovery (1993–2008) with restriction site-associated sequencing, microsatellite analyses, and quantitative genetic analysis of studbook data of 1112 birds from zoos in Europe and the United States. We used computer simulations to study the predicted changes in genetic variation and population viability from the past into the future. Genetic variation declined rapidly, despite the population rebound, and the effective population size was approximately an order of magnitude smaller than census size. The species carried a high genetic load of circa 15 lethal equivalents for longevity. Our computer simulations predicted continued inbreeding will likely result in increased expression of deleterious mutations (i.e., a high realized load) and severe inbreeding depression. Without continued conservation actions, it is likely that the pink pigeon will go extinct in the wild within 100 years. Conservation rescue of the pink pigeon has been instrumental in the recovery of the free-living population. However, further genetic rescue with captive-bred birds from zoos is required to recover lost variation, reduce expression of harmful deleterious variation, and prevent extinction. The use of genomics and modeling data can inform IUCN assessments of the viability and extinction risk of species, and it helps in assessments of the conservation dependency of populations. 相似文献