首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   12篇
  国内免费   6篇
安全科学   33篇
废物处理   11篇
环保管理   67篇
综合类   59篇
基础理论   104篇
污染及防治   148篇
评价与监测   62篇
社会与环境   26篇
灾害及防治   7篇
  2023年   7篇
  2022年   19篇
  2021年   13篇
  2020年   8篇
  2019年   12篇
  2018年   19篇
  2017年   21篇
  2016年   25篇
  2015年   18篇
  2014年   10篇
  2013年   66篇
  2012年   22篇
  2011年   33篇
  2010年   31篇
  2009年   17篇
  2008年   16篇
  2007年   20篇
  2006年   24篇
  2005年   16篇
  2004年   6篇
  2003年   10篇
  2002年   11篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1994年   3篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1977年   2篇
  1974年   1篇
  1972年   3篇
  1968年   1篇
  1967年   1篇
  1965年   2篇
  1958年   1篇
  1957年   1篇
排序方式: 共有517条查询结果,搜索用时 31 毫秒
401.
In this analysis, we characterize urban and rural ozone (O3) trends across the US for the periods 1980–2008 (29 years) and 1994–2008 (15 years) using three exposure metrics, which summarize daily O3 concentrations to reflect different ways O3 may affect human health and vegetation. We observe that a statistically significant trend at a specific monitoring site, using one exposure metric, does not necessarily result in a similar trend using the other two metrics. The two most common trends among the monitoring sites are either a continuation of negative trending over the 29-year period or a shift from negative to no trend status, indicating a leveling off of the trending. Very few sites exhibit statistically significant increases in the exposure indices. In characterizing the statistically significant changes in the distribution of hourly average O3, we observe subtle statistically significant changes in the lower part of the distribution (i.e., below 50 ppb) that are not necessarily captured by the trending patterns associated with the three exposure metrics. Using multisite data from 12 metropolitan cities, we find that as the frequency of higher hourly average concentrations is reduced, the lower hourly average concentrations also move upward toward the mid-level values. The change in the number of the hourly average concentrations in the lower range is consistent with decreased NO scavenging. We recommend assessing possible subtle shifts in O3 concentrations by characterizing changes in the distribution of hourly average concentrations by month. Identifying statistically significant monthly changes in the mid- and low-level hourly average concentrations may provide important information for assessing changes in physical processes associated with global climate change, long-range transport, and the efficacy of models used for emission and risk reductions. Our results indicate that it is important to investigate the change in the trending pattern with time (e.g., moving 15-year trending) in order to assess how year-to-year variability may influence the trend calculation.  相似文献   
402.
Prion diseases, including chronic wasting disease (CWD) and scrapie, can be transmitted via indirect environmental routes. Animals habitually ingest soil, and results from laboratory experiments demonstrate prions can bind to a wide range of soils and soil minerals, retain the ability to replicate, and remain infectious, indicating soil could serve as a reservoir for natural prion transmission and a potential prion exposure route for humans. Preliminary epidemiological modeling suggests soil texture may influence the incidence of prion disease. These results are supported by experimental work demonstrating variance in prion interactions with soil, including variance in prion soil adsorption and soil-bound prion replication with respect to soil type. Thus, local soil type may be a key determinant of prion incidence. Further experimental and epidemiological work is required to fully elucidate the dynamics of soil-mediated prion transmission, an effort that should lead to effective disease management and mitigation strategies.  相似文献   
403.

Objective

Concentrations of polycyclic aromatic hydrocarbons (PAHs) in street dust in the Tamale metropolis, Ghana, have been measured in this study.

Results

The concentrations of the various types of PAHs identified in street dust samples from high vehicular traffic density in the metropolis are as follows: naphthalene, 10,000 μg/kg; acenaphthylene, 13,000 μg/kg; acenaphthene, 76,000 μg/kg; fluorene, 18,900 μg/kg; phenanthrene, 40,000 μg/kg; anthracene, 21,000 μg/kg; fluoranthene, 35,200 μg/kg; pyrene, 119,000 μg/kg; benzo[a]anthracene, 17,700 μg/kg; chrysene, 10,600 μg/kg; benzo[k]fluoranthene, 18,700 μg/kg; benzo[a]pyrene, 10,900 μg/kg and benzo[g, h, i]perylene, 21,000 μg/kg. Calculation of the phenanthrene/anthracene ratio indicated that the PAHs identified in this study were from vehicular fallout as the ratio was less than 10.

Conclusion

It is clear from the results of the study that road users in the Tamale metropolis, especially hawkers, are exposed to the harmful effects of PAHs, and this suggests the need for the establishment of mitigation measures by the regulatory agencies.
  相似文献   
404.
Avoiding cross contamination from per‐ and polyfluoroalkyl substances (PFAS) that may occur during sampling of environmental media is the key to ensure reliable analytical results during a PFAS sampling program. Due to the ubiquitous nature of PFAS in commonly used sampling materials and personal protective equipment, mitigating the risk of cross contamination is a challenge that requires a conservative approach when planning and executing a PFAS sampling program. This article describes a conservative approach to PFAS sampling and includes a case study that evaluated three insect repellent products to determine their suitability for use during PFAS investigation. The three products were verified to be PFAS‐free for the 17 PFAS included in the analysis and, therefore, these products are suitable for use during PFAS sampling activities without concern for cross contamination.  相似文献   
405.
Ambient air quality was monitored and analyzed to develop air quality index and its implications for livability and climate change in Dire Dawa, Ethiopia. Using survey research design, 16 georeferenced locations, representing different land uses, were randomly selected and assessed for sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO),volatile organic compounds (VOCs), and meteorological parameters (temperature and relative humidity). The study found mean concentrations across all land uses for SO2 of 0.37 ± 0.08 ppm, NO2 of 0.13 ± 0.17 ppm, CO2 of 465.65 ± 28.63 ppm, CO of 3.35 ± 2.04 ppm, and VOCs of 1850.67 ± 402 ppm. An air quality index indicated that ambient air quality for SO2 was very poor, NO2 ranged from moderate to very poor, whereas CO rating was moderate. Significant positive correlations existed between temperature and NO2, CO2, and CO and between humidity and VOCs. Significant relationships were also recorded between CO2 and NO2 and between CO and CO2. Poor urban planning, inadequate pollution control measure, and weak capacity to monitor air quality have implications for energy usage, air quality, and local meteorological parameters, with subsequent feedback into global climate change. Implementation of programs to monitor and control emissions in order to reduce air pollution will provide health, economic, and environmental benefits to the city.

Implications: The need to develop and implement emission control programs to reduce air pollution in Dire Dawa City is urgent. This will provide enormous economic, health, and environmental benefits. It is expected that economic effects of air quality improvement will offset the expenditures for pollution control. Also, strategies that focus on air quality and climate change present a unique opportunity to engage different stakeholders in providing inclusive and sustainable development agenda for Dire Dawa.  相似文献   

406.
407.
Headcuts are points of accelerated channel erosion that frequently have ecological consequences. A particularly large and dynamic headcut in southwest Wyoming has affected natural and anthropogenic resources for decades. To better understand and address this issue, we undertook a review of the headcut’s upstream retreat, followed by photogrammetric monitoring of the present condition for erosion monitoring. Aerial photography shows the Bitter Creek headcut retreated >?200 m upstream in 68 years (1948–2016) at ~?1.4 m year?1. Following installation of a concrete slab structure in the mid-1970s, headcut retreat slowed to ~?0.5 m year?1. Channel sinuosity downstream of the headcut is greater than upstream, which we attribute to the presence of the headcut, given that there are no major changes in valley geometry, geology, or soils through this reach. Both aerial and terrestrial-based image platforms were used to collect stereo imagery and create 3D photogrammetric models of the headcut in 2016. From these two models, we measured soil loss downstream of the headcut at ~?126 m3 m?1 valley length. Since 1954, soil loss within the channel has been ~?98 m3 year?1 or ~871 t ha?1 year?1since then. Models created from aerial- and terrestrial-based images differed in volumetric estimates by 2%, indicating that either method could be used for this type of monitoring. The ground-based imagery model showed more detail, especially on vertical and overhanging surfaces, while the aerial imagery model produced a more realistic orthomosaic and efficiently covered a larger area. Ground-based image acquisition took longer and was more costly per unit area, but is an efficient method for small project areas, or areas where aerial imagery cannot be safely or practically acquired. Historical imagery and photogrammetric modeling proved very useful in elucidating stream dynamics associated with this large, dynamic headcut.  相似文献   
408.
The assessment of lotic ecosystem quality plays an essential role to help determine the extent of environmental stress and the effectiveness of restoration activities. Methods that incorporate biological properties are considered ideal because they provide direct assessment of the end goal of a vigorous biological community. Our primary objective was to use biofilm lipids to develop an accurate biomonitoring tool that requires little expertise and time to facilitate assessment. A model was created of fatty acid biomarkers most associated with predetermined stream quality classification, exceptional warm water habitat (EWH), warm water habitat (WWH), and limited resource (LR-AMD), and validated along a gradient of known stream qualities. The fatty acid fingerprint of the biofilm community was statistically different (P?=?0.03) and was generally unique to recognized stream quality. One striking difference was essential fatty acids (DHA, EPA, and ARA) were absent from LR-AMD and only recovered from WWH and EWH, 45 % more in EWH than WWH. Independently testing the model along a stream quality gradient, this model correctly categorized six of the seven sites, with no match due to low sample biomass. These results provide compelling evidence that biofilm fatty acid analysis can be a sensitive, accurate, and cost-effective biomonitoring tool. We conceive of future studies expanding this research to more in-depth studies of remediation efforts, determining the applicable geographic area for the method and the addition of multiple stressors with the possibility of distinguishing among stressors.  相似文献   
409.
Recent interest in expanding offshore oil production within waters of the United States has been met with opposition by groups concerned with recreational, environmental, and aesthetic values associated with the coastal zone. Although the proposition of new oil platforms off the coast has generated conflict over how coastal resources should be utilized, little research has been conducted on where these user conflicts might be most intense and which sites might be most suitable for locating oil production facilities in light of the multiple, and often times, competing interests. In this article, we develop a multiple-criteria spatial decision support tool that identifies the potential degree of conflict associated with oil and gas production activities for existing lease tracts in the coastal margin of Texas. We use geographic information systems to measure and map a range of potentially competing representative values impacted by establishing energy extraction infrastructure and then spatially identify which leased tracts are the least contentious sites for oil and gas production in Texas state waters. Visual and statistical results indicate that oil and gas lease blocks within the study area vary in their potential to generate conflict among multiple stakeholders.  相似文献   
410.
The ability to reuse carbonatic lake-dredged materials (CLDM) for agricultural purposes is important because it reduces offshore disposal and provides an alternative to disposal of the materials in landfills that are already overtaxed. A four-year (2001 to 2005) study on land application of CLDM as an option for disposal was conducted on a beef cattle pasture in south central Florida. The objectives of this study were (i) to assess CLDM as a soil amendment to improve quality of sandy soils in most subtropical beef cattle pastures and (ii) to determine the effect of CLDM on productivity and nutritive values of bahiagrass (BG, Paspalum notatum Flügge) in subtropical beef cattle pasture. The five treatment combinations arranged in randomized complete block design were represented by plots with different ratios (R) of natural soil (NS) to CLDM: R1 (1000 g kg(-1):0 g kg(-1)); R2 (750 g kg(-1):250 g kg(-1)); R3 (500 g kg(-1):500 g kg(-1)); R4 (250 g kg(-1):750 g kg(-1)); and R5 (0 g kg(-1):1000 g kg(-1)). Addition of CLDM had significant (p < or = 0.001) effects on soil quality and favorable influence on forage establishment and nutritive values. Compared with the control plots (0 g kg(-1)), the soils in plots amended with CLDM exhibited (i) lower penetration resistance, (ii) an increase in soil pH and exchangeable cations (Ca and Mg), and (iii) decrease in the levels of soil trace metals (Mn, Cu, Fe, Zn, and Si). Results disclosed consistently and significantly (p < or = 0.001) higher BG biomass production (forage yield = -106.3x(2) + 1015.8x - 39.2; R(2) = 0.99**) and crude protein content (CP = 1.24x + 6.48; R(2) = 0.94**) from plots amended with CLDM than those of BG planted on plots with no CLDM treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号