首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   3篇
废物处理   7篇
环保管理   9篇
综合类   6篇
基础理论   20篇
污染及防治   29篇
评价与监测   10篇
社会与环境   1篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1994年   1篇
排序方式: 共有83条查询结果,搜索用时 343 毫秒
51.
Small-scale (1 m2) wetland mesocosm experiments were conducted over two consecutive growing seasons to investigate the effects on soil and leachate chemistry of using a recycled coal combustion product as a liner. The coal combustion product used as a liner consisted of flue gas desulfurization (FGD) by-products and fly ash. This paper provides the chemical characteristics of mesocosm soil and leachate after 2 yr of experimentation. Arsenic, Ca, and pH were higher in FGD-lined mesocosm surface soil relative to unlined mesocosms. Aluminum was higher in the soils of unlined mesocosms relative to FGD-lined mesocosms. No significant difference of potentially phytotoxic B was observed between lined and unlined mesocosms in the soil. Higher pH, conductivity, and concentrations of Al, B, Ca, K, and S (SO4-S) were observed in leachate from lined mesocosms compared with unlined controls while Fe, Mg, and Mn were higher in leachate from unlined mesocosms. Concentrations of most elements analyzed in the leachate were below national primary and secondary drinking water standards after 2 yr of experimentation. Initially high pH and soluble salt concentrations measured in the leachate from the lined mesocosms may indicate the reason for early effects noted on the development of wetland vegetation in the mesocosms.  相似文献   
52.
53.
Size-segregated measurements of the composition of an aerosol are used to determine the transport of natural and anthropogenic aerosols to the Gosan site in springtime from 2001 to 2002. Although the transport of Asian dust is a well-known phenomenon in springtime, this study shows that not only is soil dust transported into Gosan each spring but so are anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Zn, Ni, K, S. This study also combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of the anthropogenic aerosols. Finally, four types of transport episodes were identified: (1) anthropogenic pollutants, (2) dust storm mixed with the anthropogenic aerosols, (3) typical dust storms, (4) some sea salt with clean air mass. Overall, in addition to typical soil dust, a large amount of anthropogenic aerosols, whether mixed with the soil dust or not, are transported to Gosan each spring.  相似文献   
54.
Ozone disintegration of excess biomass and application to nitrogen removal.   总被引:1,自引:0,他引:1  
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.  相似文献   
55.
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.  相似文献   
56.
An ideal off-grid island can become 100% energy-sufficient if one installs renewable energy systems such as solar photovoltaic (PV) and wind turbine (WT) systems. However, the intermittent and uncertain nature of the power supply from renewable energy systems hinders a 100% autonomy level (AL) without an infinite energy storage capacity. The thermoeconomic installation limit (TEIL) of a PV/WT hybrid energy system was studied using hourly weather data and the energy demand profile for off-grid islands. An appropriate battery size for the TEIL was also determined. Given the current installation cost of the hybrid energy system and the battery unit, the AL for a PV/WT hybrid energy system at the TEIL is calculated to be approximately 70%. Above the limit, the size of the energy storage unit and, correspondingly, the total annual cost of the PV/WT hybrid energy system increase sharply.  相似文献   
57.
Schebb NH  Ahn KC  Dong H  Gee SJ  Hammock BD 《Chemosphere》2012,87(7):825-827
The antibacterial triclocarban (TCC) concentrates in the cellular fraction of blood. Consequently, plasma levels are at least two-fold lower than the TCC amount present in blood. Utilizing whole blood sampling, a low but significant absorption of TCC from soap during showering is demonstrated for a small group of human subjects.  相似文献   
58.
Hyun S  Ahn MY  Zimmerman AR  Kim M  Kim JG 《Chemosphere》2008,71(9):1646-1653
The hydraulic properties, such as hydraulic conductivity and water retention, of aged diesel-contaminated and bioremediated soils were examined and implications of the hydraulic properties for assessing bioremediation performance of soils were proposed. Bioremediation of diesel-contaminated soil was performed over 80 d using three treatments; (I) no nutrient added, column-packed soil, (II) nutrient added, column-packed soil, and (III) nutrient added, loosen soil. Diesel reduction in treatment I soil (control soil) was negligible while treatment III showed the greatest extent of diesel biodegradation. All treatments showed greatest rates of diesel biodegradation during the first 20 d, followed by a much retarded biodegradation rate in the remaining incubation period. Reduction of the degradation rate due to entrained diesel within inaccessible soil pores was hypothesized and tested by measuring the hydraulic properties of two column-packed soils (treatments I and II). The hydraulic conductivity of treatment II soil (nutrient added) was consistently above that of treatment I soil (no nutrient added) at pressure heads between 0 and 15 cm. In addition, the water retention of treatment II soil was greater at pressure heads <100 cm (equivalent to pore size of >30 microm), suggesting that biodegradative removal of hydrocarbons results in enhanced wettability of larger soil pores. However, water retention was not significantly different for control and biodegraded soils at pressure heads >100 cm, where smaller size soil pores were responsible for the water retention, indicating that diesel remained in smaller soil pores (e.g., <30 microm). Both incubation kinetics and hydraulic measurements suggest that hydrocarbons located in small pores with limited microbe accessibility may be recalcitrant to bioremediation.  相似文献   
59.
To enhance nitrogen removal in an existing microbial contact oxidation (MCO) system with a treatment capacity of 900 m3/d, an upflow multilayer bioreactor (UMBR) was chosen as a preanoxic reactor for the removal of organic matter and nitrate. The removal performance of the retrofitted plant was evaluated during the startup phase at a low temperature in winter. The high removal (>80%) of organic matter and suspended solids in the UMBR provided stable nitrification conditions in the MCO system, as a result of the substantial reduction in organic matter and solids loaded onto the MCO system. This treatment system showed a stable nitrogen removal efficiency of 75.3%, even in the low temperature range 7 to 10 degrees C. Phosphorus was completely removed by chemical precipitation. Production rates of excess sludge, as a function of the loads of influent flowrate and biological oxygen demand (BOD), were 0.022 kg dry solid/m3 wastewater and 0.132 kg dry solid/kg BOD.  相似文献   
60.
A stream water quality model, QUAL2Kw, was calibrated and validated for the river Bagmati of Nepal. The model represented the field data quite well with some exceptions. The influences of various water quality management strategies have on DO concentrations were examined considering: (i) pollution loads modification; (ii) flow augmentation; (iii) local oxygenation. The study showed the local oxygenation is effective in raising DO levels. The combination of wastewater modification, flow augmentation and local oxygenation is necessary to ensure minimum DO concentrations. This reasonable modeling guarantees the use of QUAL2Kw for future river water quality policy options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号